Using 3D information for classification of non-melanoma skin lesins

Steven McDonagh Robert B. Fishér, Jonathan Reés

1School of Informatics?Dermatology, University of Edinburgh

Abstract. New sensors allow simultaneous acquisition of 3D shape and colour datdnoét resolutions theo-
retically approaching cellular structures. We investigate whether the additi8® depth information increases
classification rates relative to only using colour information for 5 non-nmiaa skin lesions. The paper demon-
strates that there is 6% increase in classification rates.

1 Introduction

There has been much image analysis research dedicatedéztigmition of malignant melanoma from the mid-1980's
(e.g. [1]) and reported classification sensitivities anekcdiities are now typically over 90% [2]. However, melareom
is not the only form of skin cancer, or indeed skin lesion, #refe has been almost no image analysis on these other
conditions. This paper presents the results of a classditatudy of 5 common classes of skin lesions:

AK - Actinic Keratosis BCC - Basal Cell Carcinoma ML - Melanocytic Nevus / Mole

SCC - Squamous Cell CarcinomaSK - Seborrhoeic Keratosis

We omit melanoma for two reasons: 1) other diagnostic methmaiticularly the ELM-based methods briefly discussed
below, are very successful already, and 2) melanoma is lactueather rare, but quite dangerous, condition whereas
other skin cancers are much more common. As we only had a fewlsacases of melanoma, we chose to focus on
other classes.

The classification study used two types of information: 1)BR&lour images from a digital SLR camera, and 2)
registered 30z, y, z) data at each colour pixel. The addition of 3D data was mattvély the experience of clinical
dermatologists, who touch lesions as part of their exantnat With the addition of depth data, skin shape properties
can also be extracted that are potentially of benefit in tagsification process. This leads to the key hypothesis ®f thi
paper:A classification process that uses depth and colour image feaes has a higher classification rate than the
same process using only colour featuresie will show that the classification rate increases from 78%83% and
that the null hypothesis can be rejected with significan8e More details can be found at [3].

2 Background

While there is much previous research on automated skin cdragmnosis (e.g. [4]) that research is primarily concerned
with melanoma, because of its danger, and because of thelikiimood of recovery given early detection. The
three main techniques used for automated classificatiobased on: 1) the ABCD visual diagnostic system, 2)
Epilumiunescent Microscopy (ELM) and 3) physics-based skodelling. A good survey of classification techniques
is given in [5], from which it can be seen that melanoma cfasgion sensitivity and specificity rates above 90% are
possible.

The ABCD system was originally developed for clinical ugansling for Asymmetry, Border structure, Colour varie-
gation and Diameter of lesions. Several automated claasdit processes based on different implementations of the
ABCD parameters have been reported (e.g. [4], with seiityit87% and specificity 92%). From about 1995, there
has been research into automated classification systered basELM imagery, a nhoninvasive microscopic technique
that uses oil on the skin to make the epidermis more transparel thus allow observation of deeper skin structures.
For example, [6] achieved sensitivity 93% and specificity®@%laridge et al [7] developed a physics-based model of
tissue colouration linking spectral composition to skirusture and the physics of light interacting with skin. Usin
several (quantity unclear) measurements in the 400-100fange, they reported 80% sensitivity and 82% specificity
for melanoma.

We have not identified any previous non-Edinburgh reseasigiBD depth data for skin cancer analysis. The DERMA
[8] project used registered depth and colour data, wherelépeh data was obtained from a laser range sensor. The
DERMA project measured the depth of wounds to investigagetithe evolution of wounds. Ravindranath [9] made
initial investigations into the simultaneous use of colplus lesion height. While that study had only 84 samples, best
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results were achieved (84.6% accuracy) on classifyinggnahitversusnon-malignant. No evidence for a benefit from
the single depth feature was found. Round et al [10] usechtkasity patterns observed from shape texture to seperate
melanoma from melanocytic naevi (moles).

Range and colour data are acquired using a Dimensional hgalgnse stereo image capture system built around a pair
of Canon EOS 350D SLR cameras. Each camera acquires a 348bi#8ge. Given camera placement, lenses and
patient placement, each pixel corresponds to about 0.03 kimsample separation. Measurements have determined
an RMS depth error also of about 0.03 mm. An example of theucdleft) and 3D shape (right) capture is:
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3 Method

A Bayes Classifier with a unimodal multidimensional Gaussi@ss model was used. Thirty different colour or depth
based features were computed from the image data. A greatiyréeselection method was used to identify the best
N = 10 features for the colour and range+colour classifiers.

Preprocessing consisted of 2 stages:

1. Segmentation of lesion and normal regionsMost of the features require some relative comparison éetw
properties of the normal skin and the lesion. There has baghmesearch into automatic segmentation of
melanoma lesions [4], but we chose to not reimplement thsgniplify the research. Three regions were marked
by hand using an interactive image markup tool: 1) lesioriuBgertain” boundary region around the lesion, 3)
normal skin. An example of the “uncertain” (left), skin lesi(middle) and “normal skin” (right) masked areas
is here:

(A) (€)

2. Rotation to fronto-parallel: As the patient images could be captured with some slanivelt the sensor, the
3D data was rotated to have the normal skin surface paraltbetimage plane. This was done by fitting a plane
to the 3D data of the 'uncertain’ (left patch in the figure adjoskin patch and then rotating that plane until its
surface normal was facing the viewer.

Six families of features were extracted from the colour (@2téires) and depth (8 features) image data, for a total of 30
features. Only the features ultimately used are listed.here

Relative Colour Brightness Features (9) Features 2-10 are the ratios of colour intensities withilesion relative

to the normal skin. This family of features was implementedn attempt to automatically compute quantities which
emulate the “colour” aspect of the ABCD clinical diagnosisercriteria discussed previously. The ratio of mean
colours is used to normalise for global illuminant intepsifThe features aréﬁ%, where is the mean value of
channela,b € {R, G, B} and S=lesion and T=Normal skin patches. The features aréewd (ab): 2:RR, 3:RG,
4:RB, 5:GR, 6:GG, 7:GB, 8:BR, 9:BG, 10:BB.

Relative Variability Features (4): Features 11-14 assess the variability of colours/shagiddrthe lesion relative to



the normal skin patch. The relative ratio normalises folesead human variations. The features %?e} whereo

is the standard deviation of channek {R,G, B, Z} and S=lesion and T=Normal skin patches. The features are
numbered (c): 11: R, 12:G, 13:B, 14:Z.

Peak and Pit Density Features (12)Image data is convolved with a Gaussian filter with 3 différgcales to remove
small features. A peak/pit is defined as a pixel whose valiglarger/smaller than the 8 nearest neighbours. The ratio
Ve, = FLEUset#pitse g computed where € {R,G, B, Z} ands € {0.5,1.0,2.0} is the Gaussian filter standard

deviation. The features are numbered (c,s): 15:R,0.5, 08617:B,0.5, 18:2,0.5, 19:R,1.0, 20:G,1.0, 21:B,1.0,
22:2,1.0, 23:R,2.0, 24:G,2.0, 25:B,2.0, 26:Z,2.0.

3D Shape Moment Invariant Features (3)

Features 28f;, 29:/5, 30.J5, characterise the mass distribution of the lesion volumeating the 3D lesion as the
volume that lies away from the ground plane [11].

Figure 1 left shows the distribution of feature values fa fhclasses for feature 5. There is clearly some difference in
the distributions, but it is also clear that there is consitiée overlap in the ranges of feature values. Hence, sttati
classifier was used.
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Figure 1. Left: Pre-normalisation distribution of feature valuesttue 5 classes for feature 5. Right: top/blue: Increase
in classification rate as new features are added. bottomiagelachieved if worst feature is added.

A standard Bayesian classifier with unimodal multivariatu€sian observation model was used. Visual examination
of the feature value distributions suggests that the Gansabdel is reasonable. All features were normalised so that
their feature values were zero mean, unit standard dewmiabdstribution means and covariances were estimated from
the training data subsetA.priori class probabilities were estimated using the incidenasriatthe training data.

The only non-standard aspect to the classification was ticelation of the average classification rate. Dividing the
total correct classifications by total classifications bgthe results towards the classification rates of the laigsses.
Here, some classes (AK,SCC) did not have many samples. Sead) the classification rate is computed for each of
the five classes and the average classification rate is thagevef these 5 rates.

Although 30 features were implemented, only 10 of these wseel because the AK class had only 11 examples. Trying
all feature combinations:foose(30, 10) = 3 x 107) gives optimal feature selection, but at 15 seconds per awatibn,

this is computationally infeasible. The efficient but sutimal Sequential forward selectio(6FS) [12] algorithm
was used. Starting with an empty set of features, SFS itetgtadds the single feature that maximises classifier
performance when using that feature plus all those prelyagdected, continuing until the required dimensionaikty
achieved. This algorithm considers only 245 combinatiéigure 1 (right) shows the increase in classifier perforneanc
as each new feature is added (top blue curve) and what it wave been if the worst feature was added to the previous
set of best features (bottom red curve).

4 Experiments and Evaluation

There were 234 samples over the 5 classes, distributed asrs@able 1. Classes AK and SCC are underrepresented
in the experiments, but were limited by patient availapiliThese samples were selected from a pool of patients at
the Dermatology Clinic at the Edinburgh Royal Infirmary. Gnad-truth classification was made by one of the authors
(Rees), a consultant dermatologist, based on clinicalrgh8en and, in some instances, histopathology. Samples we
excluded if: diagnosis was ambiguous, depth recoverydailecolour image was unsatisfactory.



Because of the small pool of cases, the cases were not ssparet independent training and test sets. Instead, leave-
one-outk-fold cross validation was used (i.e. each classifier imé&dion all of the available skin lesioapart from

the one that is to be classifiedThe system was trained 234 times on all data except for ampke and a prediction

is made for that sample. This affords us the maximum mileaggsiple from the available data in terms of model
training.

As there were only 11 samples in class AK, the number of featused in the classification was limited to 10. Features
were selected as described above, selecting the featuaetastage that produced the lowest classification errogusin
leave-one-out cross validation. The features that wereztad follow. Depth based features are in bold.

Feature set  Feature pool Feature subset
| Colour only {10,9,8,3,5,25,4,16,13}7
Il Colour and depth| {10,9,8,322,30,21,25,1526}

With these features, the final leave-one-out cross vatidagkperiment was performed. Tables 1 and 2 show the clas-
sification results for the colour and depth+colour classifirespectively. Adding the depth features clearly impsove
the combined (using the combination method described abaassification accuracy from 77.3% to 83.7%. The
statistical significance of this difference is discusseldue

The class specific results in Tables 1 and 2, show that thelagsifiers performed similarly with the classes AK, BCC,
ML and SK with both feature sets recognising all AK sampleseaxily and achieving similar accuracies for the other
three classes. Both classifiers had some trouble recogritserdangerous SCC class, displaying their lowest indalidu
class accuracies. The classifier using depth+colour feaisrable to outperform the colour features by a considerabl
32% recognition rate. Typical SCC lesions were noted to laeiezater like” appearance with raised surroundings and
a central depression. The three features utilising deptghrasdality in feature set (II) may be at least partially helpf

in extracting these characteristics. The most severe @nobin these classifications are the cases in which malignant
lesions (BCC,SCC) have been categorised as benign leditinSK) such as the 8 BCC and 5 SCC samples in Table
1. In a similar fashion, Table 2 exhibits 4 BCC and 2 SCC samp#&egorised as benign lesions. Thus, using the
depth+colour classifier has also reduced the potentialafatngerous misclassifications.

Diagnosis
| AK | BCC | ML | SCC| SK | Number| Rate
AK 11 0 0 0 0 11 100%
BCC| O 55 3 2 5 65 84.6%
True ML 0 7 49 0 5 61 80.3%
SCC| O 9 2 11 3 25 44%
SK 0 7 8 1 56 72 77.7%
Overall accuracy]| [ 234 [77.3%

Table 1. Confusion matrix for feature set (1)

Diagnosis
| AK | BCC | ML | SCC| SK || Number| Rate
AK 11 0 0 0 0 11 100%
BCC| O 57 1 4 3 65 87.6%
True ML 0 4 48 2 7 61 78.6%
SCC| O 4 1 19 1 25 76%
SK 0 4 8 5 55 72 76.3%
Overall accuracy]| [ 234 [837%

Table 2. Confusion matrix for feature set (II)

McNemar's test [13] was used to test whether the difference in results isssitzlly significant. McNemar's test

is a relatively simple measure that can be applied to dudésyslassification experiments. Let be the classifier
based on Colour features only as@be the classifier based on Depth and Colour featuresnlgbe the number of
examples misclassified B2 but not bys1andng, be the number of examples misclassifiedstiyput not bys2 The

null hypothesisis: the two systems have the same error rateMcNemar's test is based om@ test and essentially
computes a goodness of fit that compares the distributionurfits expected under the null hypothesis to the observed



counts. This statistic: )
(|mo1 — n1ol = 1)
no1 + N1o

o=

is distributed (approximately) ag> with 1 degree of freedom. Here;q = 27 andng;, = 19, S0¢ = 1.065, which
means that the null hypothesis can be rejected at the 0.3eoick level. Thus, there is evidence that a classification
system using a combination of colour and depth based imagerés may be more successful than a system that uses
colour based features alone. A larger test set would giveempower to the conclusion.

Most melanoma classification results are reported in terihspecificity and sensitivity, both of which are now better
than 90% typically. However, these criteria are only appiedp for two class decision algorithms (e.g. melanorsa
non-melanoma). Here, the specificity (0.95 average) andlitsaty (0.84 average) of the range+colour classifier is
computed for each class individually, treating all othexssl samples as true negatives.

Diagnosis| AK BCC ML SCC SK| Average
Specificity | 1.00 0.93 0.95 0.95 0.9 0.95
Sensitivity | 1.00 0.88 0.79 0.78 0.7 0.84

5 Discussion

The key point to make is that the addition of depth featur@esoat certainly gives improved classification results
(83.7%) compared to simply colour features (77.3%). We wienged to the use of 10 features by having only
11 samples of the AK class. Figure 1 is still showing a promedhnincrease in classification rates at 10 features,
suggesting that increased performance could be achievedibyg additional features. Principal Component Analysis
might be usable to reduce the dimensionality of the featpaees without significant loss of discrimination ability. &h
features that were used were somewhat generic and impréseihtination between commonly confused classes (e.g.
ML & SK) could be possible with additional features desigispécifically for separating these two classes. Another
family of features that were not explored were those usiragpstand colour simultaneously, which might draw out any
correlations between the properties. Given the clinicalafshape and texture in the classification of lesions, thate
from our preliminary study give weight to the hypothesisttth@pth measurements can also be useful in automated skin
lesion classification systems. A second important poirtias this seems to be the first study to consider a wider class
of lesion than simply malignant melanomarsusmoles. Hence, it has a broader impact. While performancetigato
near the 90% threshold of melanoma research, this papéeidtithone source of information that might help achieve
that level.
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