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Figure 1: We propose a real-time multi-view face tracking method for high-quality on-set facial performance capture. Using rendered syn-
thetic training (left most) we learn an actor-specific regression function, which tracks the actor’s face online using multiple cameras (middle
left). An reconstructed expression is depicted (middle right) together a digital-double face rig within a game engine (right).

Abstract
We present a real-time multi-view facial capture system facilitated by synthetic training imagery. Our method is able to achieve
high-quality markerless facial performance capture in real-time from multi-view helmet camera data, employing an actor
specific regressor. The regressor training is tailored to specified actor appearance and we further condition it for the expected
illumination conditions and the physical capture rig by generating the training data synthetically. In order to leverage the
information present in live imagery, which is typically provided by multiple cameras, we propose a novel multi-view regression
algorithm that uses multi-dimensional random ferns. We show that higher quality can be achieved by regressing on multiple
video streams than previous approaches that were designed to operate on only a single view. Furthermore, we evaluate possible
camera placements and propose a novel camera configuration that allows to mount cameras outside the field of view of the
actor, which is very beneficial as the cameras are then less of a distraction for the actor and allow for an unobstructed line of
sight to the director and other actors. Our new real-time facial capture approach has immediate application in on-set virtual
production, in particular with the ever-growing demand for motion-captured facial animation in visual effects and video games.

1. Introduction

As feature films and video games require more and more high-
quality visual effects, the demand for realistic virtual character
animation has never been higher. Ever since iconic films such as

† Joint 1st authors. [steve.g.mcdonagh,mklaudiny]@gmail.com
‡ email: kenny.mitchell@disneyresearch.com

Avatar and Lord Of The Rings relied heavily on motion-capture for
digital characters, performance-based animation, particularly for
faces, has become the regular approach for bringing virtual charac-
ters to life. Today, nearly every production that requires an expres-
sive digital actor employs some form of facial performance capture,
and this trend is unlikely to change in the foreseeable future.

The approach typically starts by placing tens or even hundreds of
markers on the face of the actor, then mounting a fixed rig of cam-
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eras to a helmet that is tightly affixed to the actor’s head, providing
(mostly) stabilized close-up video footage of the actor’s expres-
sions while they move (relatively) freely around a set. The markers
are then tracked in the one or more video streams, yielding sparse
point constraints for deforming a pre-built higher-resolution facial
rig of the actor in order to retrieve the performed animation, which
can then be transferred, for example, to a fantasy creature. This ap-
proach has become standard in production, with minor variations
in marker placement and number of helmet cameras. But there are
several avenues for improving on-set facial performance capture,
both in terms of workflow as well as quality.

The most limiting aspect for film-makers at the moment is that
tracking and reconstruction of the performance typically occurs
offline. This prevents directors from inspecting the digital perfor-
mance while shooting and hence makes directing much more chal-
lenging as the director has to rely solely on his own imagination
of the final performance. The idea of real-time virtual production
is a growing trend in entertainment production with the intrigu-
ing promise to overcome this limitation by giving the director, at
the very least, a real-time preview of the final performance. While
the research community has recently seen a growing number of
real-time monocular facial tracking methods, so far these have not
been extended to multi-camera rigs, or applied on the lower quality
footage that is typical of helmet cameras, nor have they been eval-
uated under the variable conditions that occur during production.

An additional limitation of on-set performance capture is the
cumbersome helmet and camera rig that actors are currently re-
quired to wear. While variations exist in terms of the number and
position of cameras, all rigs place the cameras directly in front of
the actor’s face, pointing inwards, approximately 20-40 cm away.
These camera rigs block the line of sight of the actor and occlude
the face from external points of view. They also prevent actors from
interacting with props (e.g. drinking a cup of tea), performing in
close contact with each other (e.g. in a kissing scene) or acting in
tight spaces.

Further still is the problem of camera shake. Hinted at earlier,
the helmet cameras provide only mostly stabilized video footage,
but fast head motion and extreme expressions can easily cause un-
wanted camera jitter or sliding relative to the head. Tracking al-
gorithms can confuse these movements with a facial expression
change. Illumination changes as the actor moves around the set
is another very common problem. Any image-based tracker that
relies on pixel intensity consistency can easily fail in such cases.
And on top of all of that, traditional marker-based trackers do not
capture a dense representation of the face, and so high-resolution
actor-specific details are often missed.

In this work we alleviate these problems, by proposing a new
real-time markerless facial capture algorithm, which estimates
dense facial performances from multi-view input videos using re-
gression. Building on state-of-the-art monocular techniques, our
primary contribution is a new multi-view framework for real-time
regression, which improves reconstruction accuracy by resolving
depth ambiguities. Our framework can scale seamlessly from one
to many views, making our approach independent of the camera
rig configuration. Furthermore, we show that our method allows
the placement of cameras in side-view configurations in contrast

to direct frontal placement. This improves actor line of sight and
flexibility while reducing face occlusion.

We adopt the approach of generating synthetic imagery for our
regression training [MKB∗16], which ensures robustness to illu-
mination changes and camera shake without requiring the capture
and manual annotation of large numbers of facial images. We are
able to explicitly train the real-time tracker on synthesized facial
renderings from arbitrary synthetic cameras that witness the actor
undergoing a wide range of facial expressions from varying view-
points and under a range of possible on-set lighting conditions.

Our method is flexible and can be applied in different scenar-
ios. In addition to on-set helmet-camera capture, we demonstrate
our technique on multi-view high-quality performance capture se-
tups, where our method can provide a reliable real-time preview. To
validate our method we show several examples on real-world data,
compare to state-of-the-art tracking frameworks and further evalu-
ate performance with a quantitative analysis on synthetic imagery.

In summary, the main contributions of our work are:

1. We generalise a single-view real-time face tracking technique
by introducing a novel multi-view regression framework based
on multi-dimensional random ferns, which can seamlessly inte-
grate an arbitrary number of viewpoints to obtain high quality
tracking;

2. We showcase how the flexibility of synthetic imagery train-
ing [MKB∗16] can be utilized in conjunction with markerless
multi-view tracking to achieve high-quality facial performance
capture for virtual production, robust to changes in incident il-
lumination and camera shake;

3. We demonstrate our method in various scenarios and compare
with state-of-the-art techniques, including helmet-based on-set
performance capture where, for the first time, we allow to place
cameras at the side of the face, improving the field of view of
the actor while reducing occlusions from the point of view of
the director.

As a result, this work represents a large step forward in real-time
on-set facial performance capture for film and video game produc-
tions.

2. Related work

Facial performance capture continues to be a primary research topic
in computer graphics, because the current demand for facial mo-
tion capture in visual effects and games is at an all-time high, and
industry practitioners seek higher-fidelity, more actor-friendly and
faster capture methods. Traditional offline approaches have come a
long way and can deliver markerless reconstruction at near-perfect
quality [BHPS10, BHB∗11, KH12, VWB∗12, GVWT13, SWTC14,
FJA∗14]. However, lengthy reconstruction times make these meth-
ods unsuitable for real-time feedback, for example on film sets and
virtual production scenarios.

A more recent trend is real-time facial capture, which tackles
the problem of reconstruction time, but typically at the cost of
reconstruction quality [CXH03, WLVGP09, WBLP11, CWLZ13,
BWP13,LYYB13,CHZ14,WCHZ14,CBZB15,HMYL15,SLL16].
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Here, a common approach is to utilize machine learning, leverag-
ing large training databases (e.g. FaceWarehouse [CWZ∗14]) and
then explaining new facial imagery by the best fitting 3D model,
for example in a regression framework [CWLZ13, CHZ14]. This
approach has the advantage of being fast, since the algorithms are
typically based on simple decision trees. On the other hand, recon-
struction results tend to be fairly generic and often lack person-
specific details. Cao et al [CBZB15] aim to remedy this problem
by regressing also person-specific wrinkle geometry, however re-
sults are still not at the accuracy of offline methods. Still, lower-
resolution real-time facial capture can be used in a variety of in-
teresting scenarios, for example real-time expression transfer for
re-enactment [TZN∗15, TZS∗16] and facial capture for virtual re-
ality [LTO∗15, OLSL16].

One approach to obtain higher fidelity in regression-based meth-
ods is to train the system on exactly the type of data that will
be observed at runtime, for example actor-specific facial expres-
sions, synthetically rendered from different viewpoints and under
different lighting conditions [RQH∗12, FDG∗12, JCK15, FHK∗15,
MKB∗16]. This is a promising avenue for real-time virtual pro-
duction scenarios, as film sets are created and actors are cast well
before shooting, opening the door to such a priori synthetic train-
ing scenarios. In particular, in concurrent work [MKB∗16] we have
shown that learning a synthetic high-resolution actor-specific prior
that is robust to illumination changes can largely improve the fi-
delity of real-time monocular performance capture. However, so
far the extension of such techniques to multiple views, typical of
commodity on-set facial capture rigs, is not trivial and has been
thus far under-explored.

To our knowledge, regression-based tracking methods have not
been explored for facial capture using multiple cameras. In a wider
space, multi-view regression typically relates to multi-modal data,
where different types of features are combined to learn a single re-
gression function [KF07]. This can be used for general learning of
complicated dependencies in large multi-modal datasets from var-
ious domains [ZZ11, ZCD∗15] or for object/category recognition
in computer vision [SRAG15]. Haopeng et al. [HZ14] use kernel
regression on multiple views for object recognition and their pose
estimation. De Campos et al. [dCM06] show that multi-camera re-
gression can be used for hand pose estimation. However, they sim-
ply stack custom hand feature descriptors into a single large vector.
A similar concept was used by Zhao et al. [ZFN∗10] for human
pose estimation.

We present the first method for real-time facial performance cap-
ture that is specifically designed for multiple video inputs. To this
end, we propose a novel multi-view regression method based on
multi-dimensional random ferns. Following recent insights in syn-
thetic prior design [MKB∗16], we construct synthetic training sets
for multi-camera scenarios where we sample across the planes of
expression, camera viewpoint, and illumination. This allows us to
evaluate different possible camera placements, and identify con-
figurations best suited for helmet camera rigs, which are typically
used in virtual productions [BGY∗13].

3. Method overview

Our approach for real-time face tracking estimates at every frame
a model state which describes a facial expression and a pose of
a camera rig with respect to the actor’s head. Facial expressions
are defined by controls of an actor-specific animation rig based on
blend shapes. The method uses a new regression framework, which
learns a mapping between images captured by multiple cameras
and the model state during a training stage. Once the regression
function is learnt, model states can be computed in real-time from
live image streams. Fig. 2 depicts a high-level workflow consisting
of an offline training stage and an online tracking stage.

The training stage for the regression (Section 5) uses synthetic
facial imagery, in contrast to real data used in previous work
[CWLZ13, WCHZ14, CHZ14, CBZB15]. This provides accurate
ground-truth model states for the corresponding images, and also
makes it easy to vary conditions such as expression, illumination,
and camera position, allowing to tailor the training to the actor,
capture rig and environment.

The training set provides synthetic training pairs of multi-view
images and corresponding model states, which are fed into a su-
pervised learning process of transitions between different model
states at consecutive frames (Section 4.1). We propose a cascaded
regression scheme using novel multi-dimensional random ferns.
Once trained, the actor-specific regressor estimates the model state
in real-time, i.e. facial expression and camera rig pose relative to
the head, and is thus suited for online tracking as described in Sec-
tion 4.2.

4. Multi-view face regression

The regression framework is used to estimate in real-time the cur-
rent facial expression and rigid model transform T of a camera rig
C with respect to the head given a set of input images at one point
in time. Facial expression and relative head pose are subsumed in
the model state S = (a,r, t), where the transform T is separated
into its translational (t) and rotational (r) components, and the ro-
tation is encoded as a quaternion. The blend weights a define the
3D shape of a facial expression B = B0 +∑

|B|
j=1 a j(B j−B0) using a

blend shape rig B. The vector S of length |B|+4+3 represents the
output variables of the regression. The input variables are sampled
from the current set of facial images I = {Ic}|C|c=1 captured from
|C| viewpoints, where |C| ≥ 1. We assume that all cameras C are
calibrated with respect to the world coordinate system of the blend
shape rig. Each camera is described by an extrinsic rigid transform
Tc and an intrinsic projection function Pc which can incorporate
any lens distortion model. The model transform T is applied to all
Tc to rigidly move the capture rig in relation to the head. For a
helmet camera rig, this can model camera shake or changes in hel-
met positioning on the head. For static camera rigs, T can capture
change of subject head pose.

4.1. Training

Regression training requires ground-truth examples of mappings
between input multi-view images and a corresponding model state.
In the case of synthetic training, a training pair (In, Ŝn) consists of
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Figure 2: Overview of real-time multi-view regression framework for facial performance capture. We start by synthetically generating a
person and environment specific training set with which we train a person-specific regressor. After offline training, the regressor can solve
for model states in real-time from input images.

the rendered images In and the ground-truth state Ŝn which was
used to generate them. This process will be discussed in detail in
Section 5. N training pairs are used as a basis for the final training
set. The regression learns transitions between initial model states
Sm and ground-truth target states Ŝm given associated images Im.
Therefore, every training pair is augmented with a set of initial
states forming M final training samples (Im, Ŝm,Sm).

Our framework is based on the cascaded regression scheme in-
troduced by Cao et al. [CWWS12] and subsequently used in similar
applications [CWLZ13, WCHZ14, CHZ14]. This scheme consists
of a sequence of T stage regressors Rt . Each Rt contains a sequen-
tial ensemble of F primitive regressors r f . The primitive regressors
have weak learning capability and they need to be combined into
an ensemble to improve overall accuracy. The stage regressors Rt

incrementally learn a regression function between input image fea-
tures from Im and state differences (Ŝm− Sm) across all training
samples m. This can be formalized as a minimization

Rt = argmin
R

M

∑
m=1
||(Ŝm−St−1

m )−R(γt(St−1
m ,Im))||, (1)

where (Ŝm− St−1
m ) is a current state residual to the targets which

needs to be learned. The function γ
t(·) samples a set of input image

features, collecting them in an appearance vector gt
m for each stage.

This sampling is based on the facial shape and pose St−1 from
the previous stage. After training each regressor Rt all samples are
updated according to the learned portion of the regression function
as follows

St
m = St−1

m +Rt(γt(St−1
m ,Im)). (2)

The starting point S0
m equals the initial state Sm. The ensemble of

primitive regressors r f forming Rt is trained in a similar fashion,
with the important difference that the appearance vector gt

m for
each sample m is kept the same for all r f . The learning target is
a residual δŜm = Ŝm−St−1

m from Eq. 1. The training minimization
is formulated as

r f = argmin
r

M

∑
m=1
||(δŜm−δS f−1

m )− r f (φ f (gt
m))||, (3)

where the function φ
f (·) defines a feature selection from the ap-

pearance vector for the primitive regressor r f . The residual δŜm is
sequentially learned from a starting point δS0

m = 0 and the updates
after each r f are computed as

δS f
m = δS f−1

m + r f (φ f (gt
m)). (4)

4.1.1. Multi-dimensional random ferns

Our primitive regressor r f is a random fern. Previous methods
[CWLZ13, WCHZ14, CHZ14] utilised random ferns for monocu-
lar face tracking where input features are one-dimensional pixel
differences between different sampling points in a single image of
a face. A fern takes in D pixel differences and compares them with
D randomly chosen one-dimensional thresholds. Results of these
split decisions determine an output bin b from 2D bins in the fern
which contains a learned increment δSb of output variables.

We propose multi-dimensional random ferns to make direct use
of multi-view image data which is used for the regression train-
ing. A feature sampled in a particular region of the face is now a
comparison between two surface points which are observed by sev-
eral cameras. This yields a multi-dimensional input variable with
pixel differences from multiple images I. Pixel differences mea-
sured in multiple images, yet representing the same feature sam-
ple, are similar (subject to view-dependent appearance factors) if
the spatial location of the feature provides an accurate correspon-
dence between images. The intuition here is that this inherent multi-
view feature constraint implicitly encodes depth information and
can be exploited by regression to aid the accurate inference of fa-
cial shape and camera locations. Therefore, it is desirable to use
multi-dimensional input variables to define fern splitting decisions,
as it preserves all information provided by multi-view inputs as
opposed to, for example, projecting multi-view differences into a
lower dimensional space. This requires an introduction of multi-
dimensional split decisions. Training samples are thus partitioned
by hyperplanes instead of just single-value thresholds.

The outlined approach is superior to simpler alternatives for han-
dling multiple views. Independent single-view regressions and sub-
sequent fusion of the results would lead to longer computational
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time at runtime and higher instability of results over time because
each single-view regression would suffer from different errors in
camera transform and expressions. Limited previous work in dif-
ferent application domains [dCM06, ZFN∗10] approached multi-
camera regression by concatenating image features across individ-
ual views. We experimented with such a baseline approach that
stacked one-dimensional pixel differences sampled across individ-
ual cameras. These can be passed as an input to a cascaded regres-
sion with standard random ferns. This is, however, much slower to
train due to feature selection from a larger pool, and more prone to
accuracy errors than the introduced multi-view technique.

To formalise our principled approach, we re-define the appear-
ance vector g = γ(S,I) for the multi-view scenario, where now each
component gu is a multi-view feature defined in R|C|. A set of 3D
sampling points {xu}Uu=1 is uniformly distributed on the surface of
the blend shape rig, limited to a predefined region of the mesh be-
tween the hair- and jawline, as depicted in Fig. 3. We ensure that
only points that are visible by at least one camera are selected as
samples. Note that the sampling point sets are randomly drawn for
each stage regressor Rt , which expands the feature pool and re-
duces over-fitting to training data. Visibility information with re-
spect to all cameras is precomputed for each sampling point xu on
the neutral expression B0 and identity transform T of the camera
rig. A foreshortening vector αααu with length |C| contains the cosine
between the surface normal at xu and a reversed camera viewing di-
rection, or zero if xu is not visible in a camera c. The foreshortening
vectors are fixed throughout regression training and testing, since
the relative head pose is only expected to change to small extent.
Given a model state S, a 3D sampling point xu deforms based on
blend weights a, which we denote by xu|a, and moves according to
a transform T. Grayscale pixel values for xu are sampled from all
images {Ic}Cc=1 and collected in the multi-dimensional appearance
sample gu. The projection to Ic is defined as Pc(T Tc xu|a), where
Tc is the pose of camera c within the capture rig and Pc(·) describes
the intrinsic projection.

a) b) c)

Figure 3: Sample point set {xu}Uu=1. We distribute samples (b) on a
region of the 3D mesh surface that corresponds to the face between
chin and hairline (a). These sample points are being projected into
the cameras to compute their appearance vectors (c).

The input feature to our ferns is a multi-dimensional difference
vector δδδus = (gu− gs) between the appearance samples of surface
points xu and xs over all views. Since the feature might be occluded
in some views, we define a compact difference vector δδδ

′
us which

contains only components from visible views and has thus a vari-
able dimensionality |C′| ≤ [1, |C|] as depicted in Fig. 4.

A particular image feature is associated with a split decision in

a fern according to a selection process described in Section 4.1.2.
The split decision is defined by a hyperplane h′, which splits in-
put features according to [δδδ′us

T 1]h′ > 0. Because of the nature of
random ferns, h′ is computed using |C′| randomly chosen samples
from the set of M training samples. For every training sample, the
appearance feature δδδ

′
us is computed. From these feature vectors the

splitting hyperplane h′ in |C′|-dimensional space is computed as
follows

[Q 1]h′ = 0, (5)

where the rows of a square matrix Q are the feature vectors. The
vector h′ is of length |C′|+ 1. This is an under-constrained lin-
ear system and the null-space corresponding to h′ is solved by
SVD. Such hyperplanes are calculated for D multi-view input
features feeding into a fern. Each feature and associated hyper-
plane can have a different dimensionality. In the monocular case
(|C| ≡ |C′| ≡ 1), the structure reduces seamlessly to the standard
random fern with one-dimensional thresholds.

Figure 4: Two different sampling point pairs illustrate multi-view
image features A and B. They are visible from differing camera
counts, therefore their feature spaces have different dimensionality
|C′|. Green lines represent fern hyperplanes h′ which partition the
feature values across training samples (grey dots).

Once the fern structure is established, it needs to be trained.
Training involves partitioning all M training samples according to
the D hyperplanes. The binary splits will associate a sample to a
bin b from 2D fern bins. For every bin b, the model state increment
δSb is computed as

δSb =

∑
m∈Ωb

(δŜm−δS f−1
m )

ω+ |Ωb|
(6)

from the current residuals of the training samples in this bin, de-
noted as Ωb. This represents a piece-wise constant approximation
of the residuals (δŜm−δS f−1

m ) across the training set. The shrink-
age parameter ω influences the learning rate of the ferns and we
compute it as ω = M/2D. The formulation in Eq. 6 reduces the rate
for a bin b if there is a low number of samples Ωb.

4.1.2. Feature selection

Selecting good features to construct the ferns is very important. To
this end, we follow the correlation-based feature selection proposed
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by [CWWS12], but extend it to multi-dimensional features. The se-
lection is based on an assumption that a good feature δδδ

′
us for learn-

ing is highly correlated with the regression target (δŜ−δS f−1) of a
fern f throughout all training samples. To compute the correlation,
the input and output vectors across the training set are projected to
1D. We define y ∈ RM as a vector of one-dimensional projections
of M model state residuals, where each residual (δŜ− δS f−1) is
projected onto a random vector υυυ of the same dimensionality as the
residual, yielding a scalar value. Since the individual variables of
the model state have different units and different importance, we
use a different random distribution per variable. This is realized
by multiplying a uniform distribution within [-1,1] with a weight β

per variable. Unlike previous work [WCHZ14] who experimentally
determined suitable values for β, we compute the weight automat-
ically. To identify how strong a variable influences the residual,
we apply a unit change to the variable and compute the resulting
change of the 3D mesh. The larger the change, the higher the influ-
ence of the variable, so we set β to the computed 3D change and
normalize over all components. In addition to the residual, we also
need to project the multi-dimensional appearance vector g′u to 1D.
This differs from previous implementations, where the appearance
was already a scalar. We propose to conduct the projection using
the foreshortening vector αααu which is fixed for all training samples.
This down-weights pixel values from oblique views and reduces
their influence on the selection process.

The correlation between a feature with point pair xu and xs and
model state residuals is calculated as follows

corr(y,ρρρu−ρρρs) =
Cov(y,ρρρu)−Cov(y,ρρρs)

Var(y)Var(ρρρu−ρρρs)
. (7)

This formulation proposed by [CWWS12] allows efficient corre-
lation computation between y and the variable difference ρρρu−ρρρs.
Theoretically, there are U2 sample point differences which yield
potential features for each split decision in a fern. We limit this pool
by enforcing the same visibility of the sample points xu and xs in
the cameras C. Another important constraint is locality of point dif-
ferences on a face [KJ14] which increases their robustness against
illumination changes. A simple 3D distance threshold (10mm in
our case) is used to further reduce the number of considered fea-
tures δδδ

′
us. We rank all features from the reduced pool according to

Eq. 7 and select the one with the highest corr(y,ρρρu−ρρρs). We repeat
this process D times to determine all input feature variables for a
fern. The hyperplanes associated with individual features are then
computed as described in the previous section.

4.1.3. Training sample augmentation

The regression learns transitions between Sm and Ŝm in the train-
ing set so it can estimate a change of model state between con-
secutive images in live streams (for instance expression changes
or camera shake). This section explains how ground-truth train-
ing pairs (In, Ŝn) are augmented with initial states to form training
samples (Im, Ŝm,Sm). The strategy differs from the previous meth-
ods [CWLZ13, WCHZ14, CHZ14] in simpler design and provides
good regression stability. Each ground-truth state Ŝn = (ân, r̂n, t̂n)
is perturbed several times to generate Sm of different types:

• expression initial states Sm = (am, r̂n, t̂n) where am is a similar
expression to ân in terms of a facial shape. We find me closest

expressions from all â in N training pairs (including the original
ân itself).

• rotation initial states Sm = (ân, r̂n + δr, t̂n) where δr is a small
rotational deviation from the ground truth transform (r̂n, t̂n). We
generate mr rotations with a step sr in positive and negative di-
rection around each axis (6mr initial states altogether).

• translation initial states Sm = (ân, r̂n, t̂n +δt) where δt is a small
translational deviation from the ground truth transform (r̂n, t̂n).
We generate mt translations with a step st in positive and negative
direction along each axis (6mt initial states altogether).

The similarity metric between expressions is based on a dif-
ference between sampling points {xi} deformed by the compared
blend weight vectors an. A sum of 3D point distances represents a
magnitude of shape difference between expressions. Note that the
transform (r̂n, t̂n) is not used in the comparison. The expression ini-
tial states should not define transitions between very dissimilar fa-
cial shapes because it increases instability of regression. However,
there is a competing requirement of good connectivity between the
ground-truth an in the blend shape space such that the regression
learns all plausible transitions between the blend shapes B. Sam-
pling of rotation and translation initial states is also related to the
transforms (r̂n, t̂n) provided in the training pairs. The numbers of
steps mr,mt and the step sizes sr,st should define transform devia-
tions which cover the space in between (r̂n, t̂n) for which we have
image data In. Overall, the augmentation step expands the number
of final training samples to M = (me +6mr +6mt) ·N.

4.2. Online tracking

After the offline training stage, an actor-specific regressor can track
the actor’s face from multi-view image streams in real-time. The
image streams need to be captured by the same camera rig as as-
sumed during training time. A benefit of multi-dimensional random
ferns is fast execution which yields real-time model state estima-
tion. An initial state Sl for the regression is derived from the solu-
tion S̃ in the previous frame. The vector Sl is sequentially updated
by stage regressors Rt as defined in Eq. 2 where the appearance
vector gt is resampled from the current multi-view images I before
each stage t. A stage increment of the model state is computed by
an internal chain of random ferns according to Eq. 4. Evaluation
of individual ferns happens in parallel because their input image
features are extracted from the common vector gt sampled before-
hand. Note that visibility of multi-view features is determined in
the training phase and it is not dynamically changed during online
tracking. This is unproblematic, since the helmet cameras can be
assumed to be largely fixed relative to the face.

To increase robustness of the final solution, multiple indepen-
dent regressions are performed simultaneously and their results are
fused together. The regressions are initialised from different model
states Sl . The previous solution S̃ = (ã, r̃, t̃) is perturbed to generate
Sl of different types:

• expression initial states Sl = (al , r̃, t̃) where al is a similar ex-
pression to ã in terms of a facial shape. We find the le closest
expressions in the training set.

• transform initial states Sl = (ã,rl , tl) where the transform (rl , tl)
is similar to (r̃, t̃) in terms of a facial movement. We find lT clos-
est transforms in the training set.
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The similarity metric based on the sparse points V is used for the
expression comparison as in the training augmentation. The same
fast metric is applied to the transform comparison where the simi-
larity of (rl , tl) and (r̃, t̃) is given by point distances. We seed the
regressions from the ground-truth states presented at training time
because this constrains solutions into known expression space and
camera movement range. Multiple regression solutions S are aver-
aged together per output variable. This reduces temporal jitter in the
tracking, which we further attenuate using a light-weight temporal
filter. Camera transform variables are smoothed by a half-Gaussian
kernel with standard deviation σt . Blend weights are smoothed by
bilateral filter with the same temporal σt and a Gaussian kernel with
standard deviation σv for variable value changes.

5. Synthetic training set generation

It is well understood that in addition to a dependence on underlying
features and choice of regression algorithm, the performance of a
learning system is heavily influenced by the size and quality of the
training data. A regressor trained on data similar to that seen at run-
time will typically offer accurate performance. Inspired by this, we
learn a regression that is specifically suited to the real-time perfor-
mance capture task at hand. To this end, we train the regressor on
imagery of the actor, rendered from expected camera positions, lit
using on-set environment lighting information.

Acquiring such a training set using real photos can be consid-
ered a tremendous burden, as the combination of facial expressions,
camera positions and lighting conditions could require thousands
of training images. Not only is this impractical, but the availabil-
ity of the actor is also typically extremely limited. Furthermore,
once the imagery is acquired it would have to be annotated (man-
ually or semi-automatically) with facial landmark positions in or-
der to determine the expression and camera parameters and sub-
sequently learn the mapping between multi-view images I and the
corresponding model state Ŝ.

To alleviate the burden of training image acquisition and in or-
der to automatically provide ground truth model states we follow
[MKB∗16] and learn actor-specific regressors by preparing syn-
thetic training data using rendering techniques. In this work, each
ground-truth training pair consists of synthetic face images In, gen-
erated by rendering the blend shape rig B from multiple virtual
cameras, and the corresponding model state Ŝn = (ân, r̂n, t̂n) that
encodes both the facial shape and the pose of the virtual cameras
(see Section 4).

In order to generate training imagery we sample from three se-
mantic axes that affect image appearance. Axes represent the ab-
stract dimensions; facial expression E, camera viewpoint V and il-
lumination I. Training images are sampled in this space through
combinations of sample points on these three axes. This allows for
various design strategies for training set generation. In this work we
follow sampling strategies proposed in [MKB∗16] that are found
to be favourable in terms of empirical tracking quality. As a result
our training set design contains typically NE = |B|+1 = 73 facial
expressions given by original blendshapes. We sample NV unique
rigid camera transforms based on the physical camera helmet de-
sign. An exhaustive training set would involve a complete axis sam-
ple cross-product combination however in practice we find more

frugal sampling to provide desirable camera movement estimation.
Sampling the illumination axis adds robustness to lighting change
at runtime. We therefore additionally relight the facial rig using NI
different illumination conditions derived from real light probe data.
The illumination samples are combined with the expression sam-
ples and the viewpoint axis to provide: N = (NE×NI)+NV training
images corresponding to the [E×I,V] design found in [MKB∗16].

6. Results

The proposed method tracks an actor’s facial performance in real-
time using multiple cameras without aid of any markers. This sec-
tion provides quantitative evaluation of the method on synthetic
data, and qualitative results are shown on real video streams from
head-mounted and static camera rigs. Examples of robustness to
challenging on-set conditions are also provided. For the best illus-
tration, we encourage the reader to view the accompanying video
material.

6.1. Experimental configuration

Two types of camera rigs have been employed for our evaluations.
The helmet rigs have cameras placed approximately 20cm away
from the actor’s face. The cameras have a wide field of view and the
imagery also exhibits minor lens distortion. The image streams are
captured at 60 f ps @ 720p. The static rig used for high-quality per-
formance capture has cameras surrounding the actor at the distance
of roughly 1m. These cameras use better lenses with narrower field
of view and almost no distortion. The image streams are captured
at 42 f ps in 1176×864 resolution.

Different training sets have been generated for our experiments
depending on the type of input image data. Table 1 describes the de-
sign of individual training sets and their size. They contain different
numbers of camera viewpoints but the same N images are rendered
per view. The subset of cameras from the training set is reported
for each experiment. The associated training times are reported for
the stereo camera setup. The typical parameter configurations used
in the experiments are:

• offline training: T = 7,F = 200,U = 800− 1600,D = 5,me =
20,mr = 2,sr = 1◦,mt = 2,st = 1.5mm
• online tracking: le = 10, lT = 10,σt = 3.5,σv = 0.05

Our framework is implemented using parallelised OpenMP C++
code without the use of CUDA or other GPU specific code. The
experimental evaluation has been performed on a standard PC with
an Intel Core i7 5960x (3GHz) CPU and 32GB RAM. The runtime
regression for a stereo stream input takes 7ms per frame (compared
to 5ms for a monocular stream). Our regression-based tracker is
integrated into a live performance capture pipeline. Image data is
streamed from a helmet capture rig into the tracker which solves in
real-time for the animation controls on the digital-double rig of the
actor. A live preview of the performance for a director is visualised
in a video game engine.

6.2. Synthetic test data

We provide quantitative evidence towards the hypothesis that ad-
ditional per frame image information significantly improves re-
gression quality. To test this claim we investigate monocular and
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Training set NE NV NI N M Time[min]

HelmetRigBasic 73 72 1 145 6670 3.9
HelmetRigA 73 72 45 3357 154422 61.5
HelmetRigB 119+ 327 74 9133 420118 154.3
StaticRigReal 73 73 1 73∗ 4234 3.4
StaticRigSynth 73 73 20 1460∗ 84680 17.8

Table 1: Characteristics of training sets used in experiments: NE -
number of expressions, NV - number of viewpoints, NI - number
of illuminations, N - number of training pairs (In, Ŝn), M - number
of final training samples (Im, Ŝm,Sm). + Original blendshapes B
extended with additional expressions created by stepping selected
weights between 0 and 1. ∗Different expressions and transforms
are mixed together in the training pairs.

multi-view regression solves using synthetic test data with con-
stant illumination. Plausible synthetic facial test-image sequences
can be generated in a similar fashion to our training data by cre-
ating artist-driven, keyframed expression poses of a blend shape
rig and generating an interpolated animation sequence that is then
used as per frame test input to the trained models. Although our
experiments make use of a blend shape rig with similar appearance
for both training and synthetic testing purposes, we generate test
keyframes using expression and camera pose combinations not pre-
viously seen at training time. Such test sequences provide a sanity
check and controllable first regression quality test for our learned
models. Making use of synthetic test data additionally affords us
the ability to quantify and measure tracking accuracy by compar-
ing to the available synthetic ground-truth data. This provides infor-
mation and model assessment capabilities not previously available
with facial performance capture methodology, which is typically
evaluated only qualitatively.

We perform two tests on synthetic data, which are described in
the following sections. The first is to support our hypothesis that
multi-view regression is more accurate than monocular. The sec-
ond is to compare different camera rig baselines, which is an effort
to identify plausible wide-baseline configurations that provide suit-
able reconstruction quality while allowing better line-of-sight of
the actor.

Figure 5: Per-frame mean vertex distance from the ground-truth
mesh for frontal monocular and stereo tracking on a synthetic
test sequence (830 frames). Mean errors typically increase during
frames exhibiting challenging expression and camera movement.
This is significantly lessened by our multi-view approach.

6.2.1. Monocular regression vs. multi-view regression

Using models trained on HelmetRigBasic, we solve for expres-
sion and camera motion parameters and reconstruct the rig pose
such that we are able to compare to the corresponding ground-
truth mesh. Using the additional image information provided by
adding a second viewpoint (±50 deg. stereo baseline), our regres-
sion method significantly improves the estimation of the trans-
form when the actor moves his head as well as for challenging
expressions. Fig. 5 provides the error per frame, calculated as the
mean vertex distance from ground-truth (using the face region high-
lighted in Fig. 3) for both monocular and stereo tracking on the
synthetic test sequence. Fig. 6 highlights corresponding monocu-
lar frontal and stereo-view regression reconstruction results for test
frame 733 where the quality improvement is clearly visible. For ev-
ery vertex we compute the Euclidean distance to ground-truth and
visualize it as a heat map.

0 mm

10 mma) b)

Figure 6: Single (a) and two-view (b) regression results visualised
with Euclidean distance to ground-truth. Vertex difference from
0mm (blue) to 10mm (red).

6.2.2. Camera rig baseline comparison

Utilizing synthetic training affords an ability to inform desirable
camera positioning and physical head-rig setup. The goal of this ex-
periment is to position the cameras in different configurations and
quantitatively evaluate the trade-off between camera configuration
and tracking quality. In practice, we find high quality reconstruc-
tions remain feasible even when making use of wide stereo base-
lines. Such configurations are attractive in production scenarios as
they move the cameras out of the actor’s line-of-sight.

Figure 7: Synthetic test stereo imagery generated by various cam-
era baselines. From left:“narrow” , “wide” , “oblique” stereo pair
configurations respectively.

Experimentally, we rotate two synthetic cameras with respect to
the head and evaluate several camera baseline configurations (±5
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deg., ±50 deg., ±90 deg.). Example training images from Hel-
metRigBasic, rendered from these stereo baselines, can be found
in Fig. 7. Additionally Fig. 8 plots the baseline error measurement
where we again evaluate performance using the mean vertex error
per frame for each baseline configuration. We find that commonly
used narrow baseline configurations (±5 deg., “narrow”) can be
pushed to a far wider horizontal pairwise configuration (±50 deg.,
“wide”) without significant loss of reconstruction quality. However,
if this baseline is extended excessively (eg. ±90 deg., “oblique”)
we begin to observe a significant loss of reconstruction quality.
Synthetic view placement investigation of this nature informs real
world camera configurations as presented in Section 6.3.

Figure 8: “narrow” vs “wide” vs “oblique” camera baselines evalu-
ated on synthetic test data. The mean vertex distance error is calcu-
lated with respect to the synthetic ground truth testing animation.

6.3. Real test data

Further to our synthetic experiments, we perform monocular and
multi-view tracking using real image data that contains moderate
head motion, a range of challenging facial expressions, and illu-
mination changes. We use single and multi-view video to compare
resulting tracking quality.

6.3.1. Monocular regression vs. multi-view regression

To evaluate the performance on real image test sequences we ad-
ditionally obtain high-quality tracking using the offline system of
[BHB∗11]. This allows numerical evaluation comparisons analo-
gous to our previous synthetic animation experiments. Fig. 9 shows
example input frames and the corresponding mono and stereo re-
gression results trained using the training set StaticRigSynth. Re-
gression tracking output is rendered with alpha transparency from
a profile view and reprojected onto the corresponding input frame
to visualize alignment and reconstruction quality. We highlight
a frame that proves challenging for monocular regression yet is
improved by the implicit depth information provided by multiple
views. This is confirmed by the corresponding error-per-frame re-
ported in Fig. 10. In examining the sequence, we observe that head
motion orthogonal to the monocular image plane results in a promi-
nent transform error as the learned monocular model fails to solve
an ill-posed problem. In general, the single-view regression pro-
vides less precise camera transforms which in turn may affect accu-
racy by way of the expression solve attempting to explain and com-
pensate for the error. The multi-view technique is better at locking
camera pose precisely in 3D space which benefits expression in-
ference. Apart from the accurate camera pose, multiple views help

to estimate better facial shape (e.g. mouth ’volume’ in expressions
such as lip funneler).

Figure 9: Example frame regression from real imagery. Left:
Monocular frontal camera regression exhibits large depth shifts.
Right: Regression from stereo side cameras shows improved per-
formance. Note that projections of the facial rig into the frontal
view are visually similar for both regressions yet the side view
highlights the improved multi-view performance, locking the rig
to the true face surface.

Figure 10: Monocular vs. stereo regression on real imagery from
the static capture rig. Large errors occur for monocular tracking
during forward head movement. Multi-view information signifi-
cantly mitigates this type of tracking error. Errors are calculated
with respect to the high-quality offline method of [BHB∗11].

6.3.2. Camera rig baseline comparison

Our framework is additionally capable of providing high quality
tracking on helmet-rig imagery captured in production environ-
ments. Using a traditional narrow baseline stereo configuration,
partially obscuring actor line-of-sight, we produce high quality
tracking of a compelling test sequence (Fig. 11). Informed by ev-
idence gained from synthetic testing experiments, we also explore
stereo-view regression using a side-view, wide baseline configura-
tion that do not obstruct the actor line-of-sight. Aligned with our
synthetic tests, we train a regressor for the wide baseline stereo
rig using the training set HelmetRigA and demonstrate success-
ful side-view performance capture in real production environments
(see supplementary video).

6.4. Illumination robustness

Training synthetically provides the ability to add illumination ro-
bustness cheaply in comparison to the prohibitive process of real
image data capture under a large number of varying lighting con-
ditions. We illustrate this advantage by synthetically relighting a
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Figure 11: Using a helmet camera rig with a narrow stereo cam-
era configuration, our method provides high quality tracking on a
challenging performance on a set.

real test image sequence to provide novel illumination appearance
variation not seen during training. We compare tracking results on
a regressor trained using combinations of synthetic expression and
camera transform under varying synthetic illumination conditions,
StaticRigSynth, to a regressor trained on real imagery exhibiting a
similar amount of real expression and camera movement variance
yet captured under a single lighting condition in the static capture
rig, StaticRigReal. The training set StaticRigReal represents a com-
mon case when a limited number of real images has been captured
and ground truth model states have been established. Such a dataset
does not extend well to new conditions, such as novel illumination,
in comparison to synthetically generated training data. Fig. 12 pro-
vides an example test frame where real training imagery clearly
fails to encode sufficient information to distinguish expressions in
previously unseen lighting conditions.

Figure 12: Left: Synthetically relit real test data. Middle: Real train-
ing imagery regression. Right: Synthetic training imagery regres-
sion. The model trained synthetically more accurately reproduces
the observed expression.

Live lighting variations are equally handled using the synthetic
training set HelmetRigB with many different illumination condi-
tions. Our method performs well on a sequence where the illumi-
nation of the face dynamically changes due to large head motion,
which provide challenging test conditions. This sequence is pro-
vided in the supplementary video material.

6.5. Comparison to recent facial tracking frameworks

Finally, we compare our multi-view regression approach to the fa-
cial capture and tracking methods of Beeler et al. [BHB∗11], Thies
et al. [TZS∗16] and Kazemi et al. [KJ14].

6.5.1. Comparison to high-quality offline capture [BHB∗11]

We compare our approach to a high-quality performance capture
method [BHB∗11] that uses 7 cameras and offline processing. In
this case, our real-time technique is trained for a side stereo camera
pair. As seen in Fig. 13, fine grained skin details are not modelled
precisely in our blend shape rig, but we recover expression changes
from the actor’s footage with very high accuracy. This allows us to
potentially drive a face rig with arbitrary level of detail in real-time.
We perform quantitative comparison to [BHB∗11], which tracks at
∼ 15 minutes / frame. The difference between tracked mesh se-
quences is represented by the blue curve (multi-view regression) in
Fig. 10. The mean vertex position difference is 2.1032mm across
the entire test sequence.

Figure 13: Left: An input frame. Middle: Hiqh-quality offline
method of Beeler et al. Right: Our real-time method.

Figure 14: Left: An input frame. Middle: Real-time monocular
method of Thies et al. Right: Our real-time method using 2 cam-
eras.

6.5.2. Comparison to real-time monocular capture [TZS∗16]

We provide qualitative comparison to the original implementa-
tion of a real-time monocular facial capture method [TZS∗16],
who frame the tracking problem as a non-linear optimization of
a person-independent facial rig. The expensive real-time minimiza-
tion of their objective function is mitigated by a data-parallel GPU-
based approach which still requires downsampling of the input
stream to 654×352 resolution. In comparison of the results Fig. 14,
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our multi-view regression method produces more accurate facial
reconstructions with a computationally cheaper framework (even
using only standard CPU hardware). Note that, as the method of
Thies et al. uses a generic face rig, a better facial shape could be
obtained by initialisation of the on a sequence with large head pose
change (see [TZS∗16] for details).

6.5.3. Comparison to sparse landmark tracking [KJ14]

Finally, we compare to a sparse 2D landmark tracking ap-
proach [KJ14]. This person-independent method detects 68 2D
facial landmarks in every frame. The publically available imple-
mentation of this regression technique in the Dlib library [Kin09],
trained on generic facial imagery from the iBUG 300-W dataset
[STZP13], is used for comparison. The supplementary video dis-
plays visual comparison between 2D tracks of face rig vertices
(manually selected to correspond with the detected 2D landmarks).
Our result is more stable over time and handles large expression
changes more successfully. This highlights the dual benefits of ad-
ditional view information and our tailored synthetic training im-
agery. We concede that our method and Kazemi et al. [KJ14] are
algorithmically different with dissimilar regression targets however
this experiment highlights limitations of existing face datasets with
annotations. Any learning-based method, trained on these datasets,
is likely to suffer loss of precision under less common imaging con-
ditions such as helmet camera footage.

7. Conclusion

We presented a real-time multi-view facial capture system that
achieves very high quality markerless tracking. The key to achiev-
ing this quality is twofold. On the one hand we employ an actor-
specific regressor, trained for the specific illumination environment
and capture equipment used during production. On the other hand
we introduce a novel multi-dimensional regression framework that
seamlessly integrates multiple live camera streams. We assess the
improvement in performance that can be gained from these compo-
nents both qualitatively and quantitatively. We further explore alter-
nate helmet camera designs and propose a variant where the cam-
eras are placed outside the field of view of the actor. This proves
very beneficial in practice, since the cameras will be less of a dis-
traction for the actor and allow for an unobstructed line of sight to
the director.

Our method requires an actor-specific face rig which is not read-
ily available in general scenarios. This is not deemed as a limita-
tion in the targeted area of film production where facial animation
rigs are commonly constructed for main cast members. The actor-
specific training data, effectively available as a biproduct, allows
for higher accuracy tracking. Further accuracy gains can likely be
achieved by improving the underlying blendshape rig as well as
more realistic rendering of training imagery. There is a limit on the
disparity between training and runtime camera configurations, es-
pecially in relative camera positioning. However, greater freedom
in camera viewpoint change can easily be achieved by extending
viewpoint variance in the training set. Moreover, camera intrinsics
can differ at runtime as long as a calibration is provided. We also
highlight that changes to the camera rig design are accommodated

with ease because synthetic training imagery can be flexibly al-
tered and cheaply generated. While the algorithm models camera
motion relative to the head, so far we do not explicitly handle rela-
tive camera motion in multi-view rigs. Therefore, adding a relative
transform per camera for training set generation could be benefi-
cial. Finally, we would like to further explore alternate helmet rig
designs, since they can open up completely novel actor interactions,
such as kissing etc. In these cases the regressor would, in addition,
have to deal with and reason about partial occlusions.

Despite these limitations, the proposed method presents a large
step towards practical on-set real-time markerless facial perfor-
mance capture, since it provides a recipe to efficiently train highly
specialized actor specific regressors by feeding in the helmet rig
specifications, some environment samples of the location, as well
as the actor’s facial rig. Such specialized trackers are very robust
and more accurate than generic facial trackers, which render them
well suited for virtual production. Applying the method in general
scenarios outside of film production is a direction for future work.
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