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Figure 1: Our results for the Cars scene where each car has a different motion. The input image (a), and its close-up (b), are
generated using 8 samples per pixel (spp) allocated by an adaptive sampler using weighted local regression (WLR) [MCY14].
Recent filtering methods utilize geometric buffers (G-buffers) such as texture (c), normal (e), and depth, which may contain
severe noise in regions with strong motion blur effects. As a result, the state-of-the-art method (g) produces over- and under-
blurred results in those regions. Our method applies an anisotropic pre-filtering to the noisy feature buffers and generates the
pre-filtered G-buffers (d) and (f). The recent filter (h) that utilizes our results instead of the noisy G-buffers, shows a reduced
error, i.e., the relative mean squared error (rMSE) [RKZ11], and better preserved edges thanks to our high-quality pre-filtering.

Abstract

We propose a novel pre-filtering method that reduces the noise introduced by depth-of-field and motion blur effects
in geometric buffers (G-buffers) such as texture, normal and depth images. Our pre-filtering uses world positions
and their variances to effectively remove high-frequency noise while carefully preserving high-frequency edges
in the G-buffers. We design a new anisotropic filter based on a per-pixel covariance matrix of world position
samples. A general error estimator, Stein’s unbiased risk estimator, is then applied to estimate the optimal trade-
off between the bias and variance of pre-filtered results. We have demonstrated that our pre-filtering improves
the results of existing filtering methods numerically and visually for challenging scenes where depth-of-field and
motion blurring introduce a significant amount of noise in the G-buffers.

Categories and Subject Descriptors (according to ACM CCS): Three-Dimensional Graphics and Realism [1.3.7]:

Raytracing—
1. Introduction tion, since they allow the efficient rendering of complex op-
) ) ] ) tical phenomena (e.g., depth-of-field or motion blur) by dis-
Monte Carlo (MC) ray tracing methods,. 1nclud.1ng dis- tributing rays according to the underlying analytic function
tributed ray tracing [CPC84] and path tracing [Kaj86], are that is being sampled. However, tracing hundreds or thou-

widely accepted to numerically solve the rendering equa-
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sands of ray samples per pixel is still needed to achieve con-
verged rendering results, leading to large rendering times
(e.g., hours) which are often not acceptable for practical
purposes. When a relatively small number of samples per
pixel (spp) is used, e.g., 8 - 32 spp, the rendered images
generally suffer from MC error (i.e., variance), which can
be considered one of the main problems of MC ray tracing
techniques.

Image filtering methods [McC99] have been widely ap-
plied for improving the performance of MC ray tracing,
thanks to their main benefits such as inherent simplicity
and generality. The high-level behavior consists of taking
the rendered image generated with a small number of sam-
ples as a noisy input, and producing a filtered image in-
stead of allocating additional samples. Recent filtering meth-
ods [ZJL*15] demonstrated that the required number of sam-
ples for achieving high-quality rendered images can be dras-
tically reduced by applying sophisticated image filters such
as cross-bilateral filter [LWC12], non-local means [RKZ12],
and weighted local regression [MCY 14].

The main challenge of image filtering for MC ray tracing
is in the fundamental difficulty to discern high frequency
noise from MC features (e.g., noisy textures). The state-
of-the-art filtering methods [LWC12,RMZ13, MCY 14, MI-
GYMI15,KBS15] are able to tackle this challenge and pro-
duce high-quality filtering results by utilizing additional
rendering-specific features. Typical features that these meth-
ods employ are geometric features such as normal, texture,
and depth, which can be obtained easily during the render-
ing process. The features boost the filtering quality by iden-
tifying the high-frequency edges introduced by discontinu-
ities in G-buffers, but robustly utilizing the features in filter-
ing frameworks can be challenging since these features may
themselves contain noise due to distributed effects as shown
in Fig. 1.

Previous approaches dealing with noisy features utilize
the variances of the geometric features during the filter-
ing process [LWC12] or use an additional pre-filtering pro-
cess [RMZ13,MCY 14, MIGYM15,KBS15], since the noisy
features caused by depth-of-field or motion blur often have
high variances. The fundamental drawback of these ap-
proaches is that the feature variances can be also high where
high-frequency edges, which should be preserved properly,
exist in focused areas (e.g., noisy textures due to a bump
mapping), and thus this often results in under- or over-
blurred results.

To alleviate this problem, we propose a novel pre-filtering
method for reducing MC noise contained in G-buffers, in or-
der to boost the performance of existing filtering methods for
MC ray tracing through a seamless integration with the exist-
ing methods. Specifically, we present the following technical
contributions:

e We propose a new pre-filtering approach using world po-

sitions and their variances to effectively reduce noise in
G-buffers.

e Our method employs a per-pixel covariance matrix of
world position samples so that detailed features intro-
duced by motion blurring are properly preserved by per-
forming an anisotropic filtering along the major direction
of motions per pixel.

e We employ the Stein’s unbiased risk estimator to lo-
cally estimate the optimal bandwidth for our pre-filtering,
which minimizes our pre-filtering error.

We have integrated our approach into state-of-the-art off-
line [LWC12, MCY14] and interactive filtering meth-
ods [DSHL10, BEM11], and demonstrated that our method
improves the filtering quality of previous approaches, by up
to a factor of 2 %.

2. Related Work

In this section, we mainly review previous filtering methods
that employ G-buffer information as filtering features since
we aim to improve existing approaches through a new pre-
filtering process on these input sources. We refer to a recent
survey [ZJL*15] that includes a comprehensive overview of
MC noise reduction.

Off-line filtering methods. Utilizing rendering-specific fea-
tures as edge-stopping functions has a long history. Mc-
Cool [McC99] presented an anisotropic diffusion process to
reduce MC noise and employed geometric features and their
variances to avoid excessive over-blurring during the itera-
tive process. Recently, controlling filtering parameters in a
data-driven way has been actively studied and demonstrated
as an effective route for improving the filtering quality. For
example, Sen and Darabi [SD12] estimated optimal param-
eters for a cross-bilateral filter using mutual information.

More recently, estimating the optimal parameters locally
based on error analysis [LWC12, RMZI13, MCY 14, MI-
GYMI15] has become a popular approach as it can produce
numerically and visually superior results, compared to man-
ually selecting the parameters globally. For example, Li et
al. [LWCI12] introduced a general error estimator, Stein’s
unbiased risk estimator [Ste81], to estimate optimal filter-
ing parameters at each pixel. Rousselle et al. [RMZ13] also
employed the general estimator for optimizing the cross non-
local means filter locally. Moon et al. [MCY 14] presented a
weighted local regression that performs filtering using fea-
tures and adjusted parameters for each feature locally so that
filtering errors can be minimized. In a similar line, Moon et
al. [MIGYM15] proposed an optimization technique for the
local regression, which performs reconstructions at only a
sparse number of pixels, in order to drastically reduce the fil-
tering overhead. Kalantari et al. [KBS15] demonstrated that
optimizing parameters using a machine learning technique
can outperform other methods that directly estimate errors
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(e.g., mean squared errors) for scenarios where estimating
errors is very challenging given a small number of samples

(e.g., 8 spp).

Recent methods have demonstrated that high-quality filter-
ing outputs can be produced by fully utilizing geometries
through bandwidth optimization, but the performance im-
provement often decreases when such features contain se-
vere noise introduced by depth-of-field and motion blur
effects. Previous methods [LWC12, RMZ13, MCY 14, MI-
GYM15,KBS15] utilized the variances of G-buffers to mit-
igate the problem. For example, Li et al. [LWC12] normal-
ized the distance of two features by their variances when
computing filtering weights of neighboring pixels, as vari-
ances of features tend to be high when affected by distributed
effects. Rousselle et al. [RMZ13] utilized a non-local mean
filter to decrease noise in feature buffers and adjusted filter-
ing parameters using variances of feature buffers. In addi-
tion, when low-discrepancy sampling is used, feature vari-
ances were estimated using dual buffers where each buffer
had half the number of samples to prevent variance over-
estimation. The local regression approaches [MCY 14, MI-
GYMI1S5] applied a truncated SVD in feature buffers and the
truncation level was determined by feature variance. These
approaches were able to produce smooth results on problem-
atic regions, e.g., defocused areas, but they can lead to over-
blurred results on focused areas as such regions can have
high variances due to complex shading (e.g., noisy textures).
In addition, they did not optimize bandwidths for filtering
the features, which can be crucial for achieving high quality
results. To reduce noise in G-buffers while preserving high-
frequency details, we present a new data-driven pre-filtering
process that can be integrated with existing filtering methods
to improve their output quality while maintaining a low com-
putational overhead. Specifically, we provide pre-filtered G-
buffers and their variances into existing filters so that these
methods can produce higher quality results using our tech-
nique.

Interactive filtering methods. Interactive filters [DSHL10,
BEM11] mainly aim to provide an interactive preview of
rendered images. Dammertz et al. [DSHL10] proposed a
variant of the A-Trous filter which utilizes geometric fea-
tures as edge-stopping functions to preserve the edges intro-
duced by geometric discontinuities. Bauszat et al. [BEM11]
applied a guided filter that utilizes the correlation between
colors and geometric features to preserve geometric edges
while removing MC noise. The main assumption underlying
existing interactive filters is that the set of rendering features
are noise-free and therefore these methods do not possess
processes to filter these features in a principled manner. In
consequence, these methods might not be able to perform
well on scenarios where noise in the G-buffers is present due
to defocusing and motion blur effects. The contributions in-
troduced in this work can be applied as part of a pre-filtering
technique to complement these methods, enabling them to
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produce high-quality previews even for scenarios that break
the noise-free assumption.

Frequency analysis based reconstruction. Anisotropic
filtering based on frequency analysis [DHS*05] has
demonstrated high-quality reconstruction results for dis-
tributed effects such as depth-of-field [SSD*(09], motion
blur [ETH*09], as a complementary line of research. Recent
methods (e.g., [MVH"14]) even showed that these recon-
structions can be performed in real-time. While the image
space methods are simple and generalizable, thanks to the
intrinsic nature of working in image space, the frequency
based reconstruction is able to produce high-quality recon-
struction results, even with low sample counts, by utilizing
per-sample information such as sampling coordinates on im-
ages, lens, and time. However, the latter frequency based
approaches often demonstrated that they reduce particular
types of noise, introduced by distributed rendering effects.
We direct the reader to a recent survey [ZJL*15] for com-
prehensive analysis.

Our method also deals with noise caused by distributed ef-
fects, but our technique mainly aims at reducing noise con-
tained in G-buffers. Specifically, our approach is designed
for improving existing image space filters by passing im-
proved G-buffers, instead of directly reducing noise in the
output images. One may apply recent anisotropic filters us-
ing frequency analysis in noisy G-buffers, but it is non-trivial
to efficiently combine these methods with the existing image
space filtering. This is mainly because these approaches typ-
ically store individual light field samples but recent image
space techniques run in a discretized space (i.e., pixel space).
Alternatively, our method utilizes per-pixel world positions,
and their distribution, to integrate our pre-filtering into exist-
ing image-space approaches conveniently.

3. Overview

Our solution for existing filtering methods is designed on
top of the observation that state-of-the-art filters [LWC12,
RMZ13, MCY 14, MIGYM15, KBS15] generally use G-
buffers as edge-stopping functions to preserve high-
frequency edges in the input image. Unfortunately, the
buffers can contain noise due to distributed effects (e.g., mo-
tion blur and depth-of-field effects), and can result in noisy
outputs as the noise in the G-buffers can be considered as
high-frequency edges. To solve this problem, we present a
new pre-filtering process for reducing the noise in the G-
buffers, as reducing the noise contained in these auxiliary
buffers can effectively improve the quality of the final ren-
dered images.

The method proposed in this paper is devised to be eas-
ily coupled with existing filtering methods of MC ray trac-
ers (See Fig. 2). Our proposed method only requires a simple
pre-processing of these auxiliary buffers in order to boost the
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Figure 2: Our pre-filtering framework. Our method reduces noise contained in G-buffers such as normal, texture, and depth
buffers, by applying a new anisotropic filtering based on world positions. Our pre-filtered G-buffers are used as edge-stopping
Sfunctions of existing filtering methods, which remove MC noise in the input image.

performance of the existing filters. Once processed, the fil-
tered G-buffers can be used as inputs of existing filters for
improving their filtering quality.

4. Pre-filtering of G-buffer Features

In this section, we formalize the problem of reducing MC
noise (i.e., variance) in G-buffers (Sec. 4.1). Next, we pro-
pose a world positions based pre-filtering (Sec. 4.2), fol-
lowed by an anisotropic filtering guided by the Mahalanobis
distance (Sec. 4.3) and the respective bandwidth optimiza-
tion (Sec. 4.4).

4.1. Problem definition

Improving the quality of existing filtering methods that use
geometric features can be tackled by reducing the noise al-
ready present on these features which later feed the filtering
algorithms. We formulate the problem as a pre-filtering pro-
cess as follows:

1

ge(k) = Z wi(k)gi(k), (D

where g.(k) is the filtered feature at center pixel ¢ in the
k-th feature buffer, and w;(k) is a filtering weight allocated
to a noisy feature g;(k) stored at the i-th neighboring pixel.
The neighboring pixels i are selected as the pixels within a
regular filtering window Q. (e.g., 7 X 7 window) centered at
c and the normalization term W is set as W = ¥;c_wi(k).

In rendering, the feature images g(k) are commonly com-
puted by averaging geometries such as normal, texture, and
depth samples at each pixel. Unfortunately these G-buffers,
which serve as edge-stopping functions of existing filtering
methods, can contain a significant amount of noise due to
a variety of distributed effects and it can lead to the sub-
optimal results of previous filtering methods. To tackle this
problem, we apply a pre-filtering (Eq. 1) to pre-filter the in-
put features (k). This allows the estimation of the unknown
features g(k) that can only be computed exactly with an in-
finite number of samples. Technically, our pre-filtering tries

(a) Input (b) Normal  (c) Variance of  (d) World  (e) Variance of
normal positions  world positions

Figure 3: Variances of normal and world positions for the
Chess scene. Given the input image (a), we visualize the nor-
mals (b) and their variances (c) that may be utilized for es-
timating errors in the normal buffer. Unfortunately, the vari-
ances in the focused area (bottom row) can be high due to the
bump mapping, but these details need to be preserved since
the details are not actual errors but a shading detail. As a
result, estimating the amount of noise in G-buffers based on
the variances can introduce over-blurring for the detailed
edges. We mitigate this problem, by utilizing world positions
(d) and their variances (e), resulting in high variances only
on the defocused area (middle row).

to minimize a filtering error, |& (k) — g (k)|? by locally con-
trolling the filtering weight, w; (k).

4.2. Pre-filtering using world positions

Our key idea for performing pre-filtering is to utilize world
positions, i.e., the intersection points between scenes and
primary rays. Let us define the j-th intersection point be-
tween scenes and the j-th ray at a pixel i as sl’»‘ j» and our
world position sample s; ; is computed using the intersection

point:
!
Sij\ _ a1 (S
()= ()

where M is the 4 x 4 transformation matrix, which can in-
clude per-sample motion such as rotation and translation.
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When a sample does not include a motion, the matrix be-
comes the identity matrix. In this case, our world position
sample s; ; is equivalent to the intersection point sf -

The main reason for using the modified intersection point
s;,j is that it allows the computation of a per-pixel covariance
matrix that estimates a per-pixel motion introduced by mo-
tion blurring. For example, suppose a rotating sphere with-
out translations. When we compute the intersection points
between the sphere and the rays within a pixel, the points
would be very similar without regards to the rotation speed.
On the other hand, our modified world position samples can
have a different distribution with regard to a motion. Our
modification can provide a high-quality filtering result for
motion blurring effects, since it can provide a crucial hint
on the anisotropic weighting that considers the distribution
caused by a local motion. The details of how we utilize the
distribution are in the subsequent section (Sec. 4.3).

After computing each world position sample, we simply av-
erage the samples within a pixel in order to perform our pixel
based pre-filtering, i.e., p; = 1/n; ):;5":1 sij, where n; is the
number of world position samples at pixel i. Given the world
position p;, we define the filtering weight w;(k) at a neigh-
boring pixel i for the k-th feature as the following:

wilk) = w(i,Be) = exp (—%) !
where d(p;,Pc) is a distance function that computes a simi-
larity between two world positions stored in pixel i and cen-
ter ¢. Note that the filtering weight function w;(k) is inde-
pendent from the type of feature, &, instead of adjusting the
weight for each feature type. We determine how to compute
the distance function d(p;,pc) and the filtering bandwidth
term 4 in the subsequent sections.

The key intuition behind the world positions based weight-
ing is that we can robustly identify the problematic regions,
e.g., noisy geometries in defocused areas, by estimating the
variances of the worlds positions. For example, the vari-
ances are typically low in the focused areas since the de-
tailed edges, e.g., noisy normals, are introduced by a shad-
ing process, as shown in Fig. 3. In addition, there can be
high correlation between the world positions and other fea-
ture buffers (e.g., texture, normal, and depth), as the buffers
are typically sampled at intersection points (i.e., world po-
sitions) between rays and scenes. Our approach utilizes this
correlation through our world position based weighting, and
filters the feature buffers with equivalent amounts of smooth-
ing, while identifying the problematic areas.

As an alternative, one may estimate noise in G-buffers by
utilizing the variances of the buffers, and then apply a pre-
filtering on each buffer based on the estimated variances
since the variances tend to be high for problematic regions
such as defocused areas. These approaches, however, can
fail to preserve very detailed edges in focused areas, as those
areas typically have high variances. For example, normals in
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(a) Input
8 spp, rIMSE 0.00204

(b) A result without our cov. matrix
8 spp, rIMSE 0.00148

(c) Our result with our cov. matrix
8 spp, rMSE 0.00091 4K spp

(d) Reference

Figure 4: Results with and without our per-pixel covariance
matrix. Our method performs an anisotropic pre-filtering by
utilizing the matrix, which is computed by world position
samples per pixel. Our result (c) shows numerically and vi-
sually better results over the alternative (b) that does not
utilize the covariance matrix. To compute these results, we
apply the pre-filtering approaches to the state-of-the art fil-
tering method, WLR.

focused areas (Fig. 3) have detailed edges and correspond-
ing high variances due to the bump mapping, but these edges
should be preserved as they are not MC noise, despite ex-
hibiting high variances. As a result, it can be fundamentally
difficult to estimate the optimal pre-filtering weight, based
on the feature variances.

4.3. Mahalanobis distance on world positions

To compute the weighting function (Eq. 3), we need to de-
fine a distance metric that measures a similarity between two
world positions. The world positions can have irregular den-
sity, and thus its ranges can vary locally, e.g., 1 to 1000. It
requires a normalization process on the world positions so
that pre-filtering can be performed properly. In addition, the
distance metric needs to consider the dominant direction of
motions at each pixel, in order to perform an anisotropic pre-
filtering along the direction. To this end, we employ the Ma-
halanobis distance with a per-pixel covariance matrix S¢ of
world position samples:

d(ﬁhf)C) = A(f’hf)C)TS;lA(f)hf)C) +A(f)i7f)C)TS[71A(f’i7f)C)
= A(pi,be) (S 457 A, Be), @

where A(P;, pc) = Pi — Pe. We compute the 3 x 3 covariance

matrices S¢ and S; at each pixel ¢ and i using the world posi-

tion samples s, ; and s; j (Eq. 2). We include how to compute
the covariance matrix in Appendix B.

In Fig. 4, we compare our approach with an alternative that
does not utilize the per-pixel covariance matrix. For the al-
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ternative method, we set the covariance matrix as the identity
matrix. As shown in this figure, our result preserves the high-
frequency edges better and effectively removes the noise in-
troduced by the motion blur compared to the tested alterna-
tive, since the covariance matrix allows our method to per-
form an anisotropic pre-filtering along the major direction of
motions per pixel.

Defining an appropriate distance between two measurements
plays a key role in many computer vision and machine learn-
ing algorithms, and extensive studies are available [YJO6].
The most common yet simple metric is the Euclidean dis-
tance and this corresponds to setting the covariance matrix
(st + Sfl) to the identity. The main advantage of using
the Mahalanobis distance, compared to the simple Euclidean
metric, is that we can naturally account for correlation or co-
variance between measurements [XNZ08]. In our case, mo-
tion blur can introduce a shared distribution of features that
requires a reconstruction along the major motion direction.
Our approach controls the shape of our filter based on the
per-pixel distribution of world positions, and estimates its
optimal size to minimize our filtering error (in the next sec-
tion).

4.4. Optimization of bandwidth

Given the Mahalanobis distance metric (Eq. 4), we estimate
an optimal value for the bandwidth term /4 such that the error
|&c (k) — gc(k)|? is minimized per each center pixel c. This
optimization can be fundamentally challenging as discussed,
and thus we instead try to minimize an additional error term
[[pe — pel|? which is related to the following equation:

. 1 TN
be =37 Y w(Bi.Pe)bi- Q)
i€Q,

Intuitively speaking, we estimate an optimal weight
w(Pi,Pe) at each pixel so that our filtered world position
Pc is closely matched with the unknown world position pe¢
that would be computed with an infinite number of samples.
Then, we pre-filter all other available geometries using the
weighting function, defined by the bandwidth found by si-
multaneously optimizing world position information.

To estimate the optimal bandwidth, we employ Stein’s unbi-
ased risk estimator [Ste81,BL07] that estimates the expected
mean squared error term E|[p. — pc||*. To apply the gen-
eral estimator, we assume a statistical model, p. = p¢ + €1,
where the noise term €. follows the normal distribution,

gc~N (O7 G2 (f)c)/nc> and / is the 3 x 3 identity matrix. The

67 (pe) is the sample variance of the world position and n is
the sample count at the pixel ¢, respectively. Given the nor-

mality assumption, we can compute the unbiased estimation
for our pre-filtering error as the following:

Lo o (Be) | 20%(Be) .
SURE = —||pc — — ——+ ——div(p.), (6
1B —Bell ne T np dvBe) (©)

where D is the dimension of the input vector P, i.e., D =
3, and div(P.) is the divergence term of the filtered value.
We include the computation of the divergence term in our

appendix A.

Given a user-defined set of bandwidths, we run our pre-
filtering (Eq. 5) with bandwidth values selected from this
set and estimate the corresponding error (Eq. 6). Then, we
select the bandwidth which has a minimal estimated error
as the estimated optimal bandwidth ft,,,,t. Note that the es-
timation (Eq. 6) can provide negative values, since SURE
is an unbiased estimator of the mean squared error and the
estimator has its own variance, as discussed in a recent pa-
per [LWC12]. We select a bandwidth with a minimal error
as optimal, even if the estimated error is negative.

One may employ this general estimator to apply a pre-
filtering for each G-buffer, instead of our world-position
based pre-filtering. In Fig. 5, we compare this alternative
with our method. The alternative approach directly applies
a pre-filtering on the normal buffer and the optimal band-
widths are estimated by the error estimator that we em-
ploy for our method. As shown in Fig. 5, this approach
fails to preserve the detailed edges generated by a bump
mapping, since those areas have high variances in the nor-
mal buffer. This indicates that directly feeding the variances
into the SURE based bandwidth selection can lead to sub-
optimal bandwidths in focused areas, e.g., (c) in Fig. 5, as
the SURE (Eq. 6) typically predicts lower errors from large
bandwidths than those predicted from smaller bandwidths,
due to the high variances. Our method, however, mitigates
this problem by utilizing world positions and their variances.

5. Implementation Details

We have implemented our pre-filtering using CUDA, and
applied it to reduce noise in the G-buffers before con-
ducting filtering methods for Monte Carlo ray tracing.
We have used a 7 x 7 filtering window Q. and esti-
mated an optimal bandwidth /,p; using a user-defined set
(0.0,0.4,0.8,1.2,1.6,2.0). In practice, the smallest value 0.0
can be considered as an exception in order to make our pre-
filtering consistent. In this case, our pre-filtering produces
input values as outputs without performing any smoothing
and our pre-filtering error is equal to the input variance, i.e.,
6% (pc)/ne. We have found that the estimated optimal band-
widths using Stein’s unbiased risk estimator can be very
noisy, as reported in the previous paper [LWC12]. As sug-
gested in the previous work, we use an additional smoothing
that filters the estimated noisy bandwidths. Specifically, we
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(a) Input image
8 spp

(b) Input normal
MSE 0.000257

the alternative

(c) Bandwidths from (d) Pre-filtered normal (e) Our bandwidths
using the alternative
MSE 0.000040

(f) Our pre-filtered
normal
MSE 0.000021

(g) Reference normal
256 spp

Figure S: Visualizations for estimated bandwidths. MC ray tracing produces the input image (a) and normal buffer (b), and the
normal buffer contains noise due to the depth-of-field effect. As an alternative of our pre-filtering, we test a pre-filtering based
on the variances of the normals. The alternative shows a smooth result on the defocused area (second row), but removes high-
frequency details in the focused region (bottom row) due to the large bandwidths caused by the high variances of the normals.
For our visualization purpose, the bandwidth values are mapped into a normalized range, 0 (smallest) to 1 (largest one). Our
method using world positions, however, preserves high frequency details thanks to the small bandwidths, while removing noise
in the defocused areas. The mean squared error (MSE) is computed using the reference normal buffer computed with 256 spp.

applied a simple Gaussian filtering with a bandwidth 1.5 so
that estimated optimal bandwidths can be smoothed. Analo-
gously, we have also applied the same Gaussian filtering to
the per-pixel covariance matrix S¢ since the elements of the
matrix can be noisy as well especially when a small number
of samples (e.g., 4) is used.

Variances of pre-filtered features. We provide smoothed
geometric features to existing filtering methods instead of
noisy features, and thus we need to compute the variances
of the pre-filtered features since the existing filtering meth-
ods can utilize the variances in addition to the features. For
example, Li et al. [LWC12] employed the feature variances
to compute the filtering weight between two pixels in their
cross-bilateral filter and Moon et al. [MCY14] applied a
truncated singular value decomposition using the variances.
For a seamless integration of our method into the existing
method, we compute the filtered variance which can be nor-
mally smaller than the input variance. We employ the vari-
ance estimation technique using dual buffers, recently pro-
posed in [RMZ13]. Specifically, we split world position sam-
ples into two buffers, and apply our pre-filtering to noisy G-
buffers using each world position buffer, respectively. The
output variances are simply estimated as squared differences
of each pre-filtered G-buffer. In addition, we apply a Gaus-
sian filter with a small bandwidth (e.g., a pixel width) to each
world position buffer before performing our pre-filtering.
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(a) Input texture (b) Inset (c) bilateral, 8 spp
8 spp 8 spp filtering time (21 ms)
MSE 0.00043 MSE 0.00043 MSE 0.00032
(d) NLM, 8 spp (e) Ours, 8 spp (f) Reference
filtering time (308 ms) filtering time (54 ms) 512 spp
MSE 0.00029 MSE 0.00010

Figure 6: Pre-filtering results for the noisy texture buffer,
i.e., (a) and (b). The bilateral filter (c) leaves some high-
frequency noise on the motion blurred area and NLM (d)
produces over-blurred results. Our method (e) generates bet-
ter results than the previous approaches, since our technique
performs an anisotropic filtering along the motion direction
guided by distributions of world positions.

We calculate the variances when computing the pre-filtered
features, and pass those maps into existing filtering methods.
The main practical benefit of our pre-filtering is that we do
not need to modify the existing methods thanks to our seam-
less integration.
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(b) Inset
16 spp (4.42 s)
rMSE 0.00094

16 spp (4.42's)
rMSE 0.00094

(9) WLR
16 spp (13.68 s)
rMSE 0.00102

(c) SURE
16 spp (8.12's)
rMSE 0.00059

(h) WLR w/ bilateral
16 spp (15.13 s)
rMSE 0.00068

(d) SURE w/ bilateral
16 spp (8.12's)
rMSE 0.00044

(e) SURE w/ NLM
16 spp (8.38 s)
rMSE 0.00039

(f) SURE w/ ours
16 spp (8.16 s)
rMSE 0.00034

(i) WLR w/ NLM
16 spp (15.33 s)
rMSE 0.00063

(j) WLR w/ ours (k) Reference
16 spp (16.94 s) 4K spp
rMSE 0.00045

Figure 7: Results for the Cars scene (each car has a different motion). SURE and WLR produces under- and over-blurred result,
respectively. The previous methods exploiting our pre-filtered G-buffers show improved results.

(b) Inset
8 spp (2.61s)
rMSE 0.00440

(a) LD
8 spp (2.61s)
rMSE 0.00440

8 spp (8.30 s)
rMSE 0.00129

(c) SURE
8 spp (5.09 s)
rMSE 0.00341

(9) WLR (h) WLR w/ bilateral
8spp (9.72s)
rMSE 0.00163

(d) SURE w/ bilateral
8 spp (5.12s)
rMSE 0.00227

(e) SURE w/ NLM
8 spp (5.42's)
rMSE 0.00111

(f) SURE w/ ours
8 spp (5.16 s)
rMSE 0.00104

(i) WLR w/ NLM (j) WLR w/ ours (k) Reference
8 spp (10.21 s) 8spp (11.43's) 4K spp
rMSE 0.00075 rMSE 0.00071

Figure 8: Results for the Chess scene. SURE (c) and WLR (g) produce noisy results on the defocused area due to noisy features
such as texture, normal, and depth. Our pre-filtering on the noisy features improves the filtering quality of the previous methods

in terms of numerical accuracy and visual quality.

6. Results and Discussions

We have demonstrated our pre-filtering with recent off-
line filtering methods such as Stein’s unbiased risk estima-
tor (SURE) [LWC12] and weighted local regression based
adaptive rendering (WLR) [MCY 14]. We have utilized the
GPU implementation provided by the authors for WLR and
converted their CPU implementation of SURE into a CUDA
implementation. For the selected off-line filtering methods,
we have tested different pre-filtering methods such as a bi-
lateral filter, non-local means (NLM) [RMZ13], and our
method.

In addition, we have also verified our method with recent

interactive filtering approaches such as A-Trous [DSHL10]
and guided filters [BEM11], which utilize normal, texture,
and depth as edge-stopping functions. Furthermore, we have
also tested the low discrepancy (LD) sampling that uses a
uniform sampling and pixel reconstruction filter (e.g., box
filter), without applying a post filtering process. We have
only used direct illumination, in order to clearly show fil-
tering results affected by tested pre-filtering approaches. For
our tests, we have used a Windows machine with an Intel
Xeon CPU E5 3.00 GHz CPU and NVidia GTX 1080 graph-
ics hardware. As a numerical measure, we use the relative
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(a) LD
64 spp (362.52 s)
rMSE 0.01460

(b) Inset
64 spp (362.52 s)
rMSE 0.01460

(c) SURE
64 spp (396.99 s)
rMSE 0.00608

(9) WLR
64 spp (398.26 s)
rMSE 0.00428

64 spp (401.87 s)
rMSE 0.00336

(d) SURE w/ bilateral

(h) WLR w/ bilateral

(e) SURE w/ NLM
64 spp (397.32 s)
rMSE 0.00446

(f) SURE w/ ours
64 spp (397.04 s)
rMSE 0.00433

64 spp (397.00 s)
rMSE 0.00495

(i) WLR w/ NLM (j) WLR w/ ours (k) Reference
64 spp (402.71's) 64 spp (409.67 s) 4K spp
rMSE 0.00308 rMSE 0.00305

Figure 9: Results for the San Miguel scene where the depth-of-field effect is simulated. In the defocused area, the previous off-
line methods (SURE and WLR) leave some noise due to noisy G-buffers, but the existing methods combined with our pre-filtering

produce numerically and visually better results.

(b) Inset ~ (c)SURE
16 spp (83.41's) 16 spp (80.47 s)
MSE 0.02094 MSE 0.01584

(@) LD
16 spp (83.41's)
rMSE 0.02094

(9) WLR (h) WLR W/ bilateral

16 spp (86.09 s)
rMSE 0.01677

16 spp (87.57 s)
rMSE 0.01307

d) SURE w/ bilateral

() SURE wi ours
16 spp (80.52 s)
MSE 0.01468

~(e) SURE w/ NLM
16 spp (80.63 s)
rMSE 0.01910

16 spp (80.48 s)
rMSE 0.01485

) (k) Reference
16 spp (91.39 s) 2K spp
rMSE 0.01052

] (i) WLR w/ NLM ) (j) WLR w/ ours
16 spp (87.67 s)

rMSE 0.01435

Figure 10: Results for the Planes scene. The zoom-in region shows a challenging scenario where motion exists behind the
complex geometries. Our method improves the results of previous methods (SURE and WLR) by pre-filtering the motion blurred

area while preserving the geometries in the focused region.

mean squared error (tMSE) [RKZ11] that was commonly
adopted in the state-of-the-art filtering approaches.

Benchmarks. We test our pre-filtering for the rendering
scenes, 1) Cars (1000 x 600), 2) Chess (750 x 1000), 3) San
Miguel (1024 x 1024), 4) Planes (800 x 600), and 5) Furry
Bunny (1024 x 1024), where the numbers in the parentheses
are tested image resolutions. For the Cars scene (Fig. 1, 7),
we simulate different motions for each toy car, which in-
troduces different amounts of noise in feature buffers. This
scenario introduces a challenge for our method as our pre-
filtering kernel shape should be an anisotropic one along
each motion direction so that high-frequency edges in G-

(© 2017 The Author(s)
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buffers are properly preserved. In the Chess scene (Fig. 8),
a strong depth-of-field effect is simulated where the features
become noisy on the defocused regions. The chess object in
the focused region has noisy normals due to bumped map-
ping, and thus a pre-filtering needs to distinguish the noisy
features from noise in the defocused areas. Given the San
Miguel scene (Fig. 9, 13), we test a depth-of-field effect
on complex geometries, which introduces severe noise in
the feature buffer. For the Planes scene (Fig. 10), we add
toy planes that have different motions into the San Miguel
scene. It provides a challenging scenario for our method
since some motion blurred areas are mixed with static but
complex geometries, i.e., tree leaves. Given the Furry Bunny
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(c) RDFC w/ ours  (d) Reference
16 spp (10.39) 4K spp
rMSE 0.00047

(a) LD (b) RDFC
16 spp (4.42 s) 16 spp (10.33)
rMSE 0.00094 rMSE 0.00053

b

£ E .4 e

(e) LD (g) RDFC w/ours  (h) Reference
16 spp (83.41s) 16 spp (87.73s) 16 spp (87.77 s) 2K spp
rMSE 0.02094 rMSE 0.01111 rMSE 0.00993

Figure 11: Results for the Cars and Planes scene. A recent
filtering method, RDFC, produces improved results when
our pre-filtering is combined.

scene (Fig. 14), we also test a very challenging scenario
where each model with fur has different motion. This scene
provides a failure case of our pre-filtering, since this test
makes our per-pixel statistics very noisy especially when we
use small sample counts.

Comparisons with other pre-filtering. We compare our
pre-filtering with other methods such as a simple bilateral
and an optimized non-local means (NLM) filter [RMZ13].
For testing the previous methods, we apply these filters to
each feature buffer separately as performed in the previous
work [RMZ13]. We select the parameters of the bilateral fil-
ter so that the numerical errors of the filter can be minimized.
Note that this parameter selection cannot be performed in
practice, as it is not possible to know the ground truth image.
For the NLM filter, we split feature samples into two buffers
(i.e., dual buffers), and then estimate variances of features
using the squared differences between the two buffers, as
described in [RMZ13]. In addition, we utilize the implemen-
tation provided by the authors. As shown in Fig. 6, the sim-
ple bilateral leaves some noise in the motion blurred area.
One may increase the (range) parameter to further reduce
the noise, but it can lead to over-blurring in other areas (e.g.,
focused area). The NLM filter produces smooth results, but
tends to fail to capture fine details caused by motion blur. In
comparison, our method preserves the details well as it per-
forms a more robust filtering based on world positions and
their distributions. Also, our filtering time (e.g., 54 ms) is
much lower than that of the relatively expensive patch-based
method (e.g., 308 ms).

Pre-filtering for off-line filtering methods. Given the Cars
scene (Fig. 7), the method based on the local regression (i.e.,
WLR) shows slightly lower quality than SURE in terms of
the numerical accuracy, since the correlation between fea-
tures and colors in the scene is not high. For other scenes

(Fig. 8, 9 and 10), WLR shows better results than SURE as
the local regression utilizes the existing correlation using the
linear models. These previous techniques generate improved
results compared to LD, which does not utilize any post fil-
tering approaches. However these previous methods show
under- or over-blurred results in the motion blurred areas (in
Fig. 7 and 10) and defocused regions (in Fig. 8 and 9). This
is mainly because the G-buffers that these methods employ
are noisy.

Tested pre-filtering approaches (bilateral, NLM, and our
method) alleviate this problem by passing filtered G-buffers
and their variances into the off-line techniques. While the
filtering results combined with a simple bilateral filter still
show noisy results, NLM and our method enable the oft-line
filters to generate smooth results on the defocused or mo-
tion blurred areas. Specifically, our pre-filtering and NLM
show similar results for the depth-of-field scenarios (Fig. 8
and 9), but our method outperforms NLM given the motion
blur benchmarks (Fig. 7 and 10) as our pre-filtering guided
by world positions (and their covariances) leads to a sheared
reconstruction along object motions. In addition, NLM does
not improve the result of SURE, since NLM removes high-
frequency information in the focused area for the Planes
scene (e.g., tree leaves in Fig. 10). Our pre-filtering reduces
these over-blurring artifacts by utilizing the variances of
world positions, instead of the variances of each feature.

We also tested our pre-filtering with the robust denoising us-
ing feature and color (RDFC) [RMZ13], which has a sophis-
ticated pre-filter using NLM. Our approach is designed only
for removing noise in G-buffers, and thus our pre-filtering
does not reduce noise in other features (e.g., visibility) of
the RDFC. Specifically, our filter takes noisy G-buffers as
inputs and passes filtered buffers (and variances) to RDFC,
which performs its own pre-filtering (i.e., NLM) and main
filtering. As shown in Fig. 11, our technique improves the
results of RDFC both numerically and visually.

Numerical Convergence. We have evaluated rMSE num-
bers for our tested scenes in Table 1 (also shown in Fig. 12),
when different numbers of samples are used. The existing
off-line methods aim to reduce MC noise in rendered im-
ages generated by not only small numbers of samples (e.g.,
8 to 16) but also relatively large numbers of samples (e.g.,
32 to 64), and thus a pre-filtering should improve the filtering
quality of existing approaches for a different number of sam-
ples. As shown in the table and figure, our pre-filtering con-
sistently reduces the numerical errors for WLR and SURE.
It indicates that our method is able to improve the previous
methods when a different amount of noise exists in G-buffers
thanks to our high-quality pre-filtering. In addition, we im-
prove the filtering quality of the state-of-the-art methods, by
up to a factor of 2x. For example, the rMSE of SURE with
our method (0.00104 with 8 spp) is lower than the error of
SURE without our pre-filtering (0.00140 with 16 spp) for
the Chess scene. Also, the error of WLR with our approach
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(0.00026 with 32 spp) is lower than that of WLR without our
pre-filter (0.00037 with 64 spp) for the Cars scene.

Pre-filtering for interactive filters. Given the San Miguel
scene (Fig. 13), we have tested our pre-filtering for inter-
active filters, A-Trous and guided filters. The filters tend to
produce very noisy results on the defocused area as these fil-
ters do not have a pre-filtering process to address noise in G-
buffers. Our method, however, significantly boosts the filters
by passing pre-filtered G-buffers into the inputs of the fil-
ters, and the methods with our pre-filtering show smoothed
results on the region. In addition, the numerical errors are
reduced from 0.02289 and 0.02313 to 0.01200 and 0.01675
for the A-trous and guided filters, respectively.

Computational overhead. The computation times of our
pre-filtering are 53 ms, 66 ms, 96 ms, and 47 ms for the Cars,
Chess, San Miguel, and Planes scenes, respectively. The fil-
tering times of the off-line methods are 0.93 s and 4.58 s
(Cars), 1.14 s and 3.67 s (Chess), 1.49 s and 7.78 s (San
Miguel), and 0.74 s and 5.03 s (Planes scenes) for SURE
and WLR, respectively. As a result, the percentages of our
computational overheads over the existing off-line filters are
6.1 % and 1.3 % for SURE and WLR on average. For the
interactive filters, the percentages are increased to 33 % and
21 % for the A-Trous and guided filter as these filters are
much faster than the off-line filters. Our method introduces
a relatively non-negligible overhead for the interactive fil-
ters, but the results of the interactive filters are significantly
improved since these filters without our pre-filtering cannot
address noise in G-buffers.

We have observed that the filtering times for WLR increase
when our pre-filtering is applied, since the computational
time of WLR is dependent from the variance of G-buffers.
Especially, WLR estimates the dimensionality of local fea-
tures using the variance, and the computational overhead
increases as the dimension increases. As our method low-
ers the variances, the dimension tends to be increased. For
example, the filtering time for the Cars scene is increased
from 4.58 s (without our method) to 7.84 s (with ours). For
other filters such as SURE and interactive filters, the com-
putational times are the same since the number of computa-
tions for these methods are independent of the variance of
G-buffers. Overall, our computational overhead can be con-
sidered acceptably small if we consider the quality improve-
ment of the previous methods.

Limitations and future work. Our method relies on the per-
pixel covariance matrix to guide an anisotropic kernel shape
with the Mahalanobis distance for motion blurring effects,
but the shape can be sub-optimal when a non-linear motion
is simulated since the shape is an ellipsoid, rather than an ar-
bitrary shape. It would be interesting to approximate a non-
linear motion as multiple linear motions and then apply a
separate pre-filtering for each motion.
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Spp 8 | 16 | 32 64

Method Cars

SURE 0.00143 | 0.00059 | 0.00031 | 0.00017
SURE with ours | 0.00073 | 0.00034 | 0.00019 | 0.00011

WLR 0.00184 | 0.00102 | 0.00061 | 0.00037
WLR with ours 0.00090 | 0.00045 | 0.00026 | 0.00017

Method Chess

SURE 0.00341 | 0.00140 | 0.00055 | 0.00022
SURE with ours | 0.00104 | 0.00055 | 0.00024 | 0.00012

WLR 0.00129 | 0.00054 | 0.00028 | 0.00016
WLR with ours 0.00071 | 0.00033 | 0.00017 | 0.00010

Method San Miguel

SURE 0.05118 | 0.03608 | 0.01251 | 0.00608
SURE with ours | 0.03088 | 0.02051 | 0.00833 | 0.00433

WLR 0.02097 | 0.01201 | 0.00703 | 0.00428
WLR with ours 0.01207 | 0.00743 | 0.00473 | 0.00305

Method Planes

SURE 0.02676 | 0.01584 | 0.00869 | 0.00487
SURE with ours | 0.02646 | 0.01468 | 0.00772 | 0.00429

WLR 0.02994 | 0.01677 | 0.00934 | 0.00551
WLR with ours 0.01745 | 0.01052 | 0.00636 | 0.00394

Table 1: rMSE comparisons for the off-line filters, SURE
and WLR, given a different number of samples per pixel.

Another limitation of our approach is that per-pixel statis-
tics such as per-pixel covariance or variances of world posi-
tions can be noisy when a small number of samples is used.
Fig. 14 illustrates this scenario where two furry objects have
different motions. Our pre-filtering improves the result of
the WLR even for this case, thanks to the improved fea-
ture buffers passed by our method. However, the previous
method still generates over-blurred results, since our pre-
filtering does not provide high-quality pre-filtered buffers
due to noisy statistics caused by complex geometries and
a low sample count. As discussed in the implementation
section (Sec. 5), we apply a simple filtering to the covari-
ance matrix and estimate optimal bandwidths to alleviate this
problem. However, it would be ideal to design a robust esti-
mation process for these per-pixel statistics without applying
the additional smoothing. We leave these potential research
direction to our future work.

7. Conclusions

In this paper, we have presented a pre-filtering technique that
reduces noise while preserving detailed edges in G-buffers,
which mainly aims to boost existing filtering techniques. As
a key idea, we propose a world position (and its variance)
based pre-filtering process which robustly identifies prob-
lematic regions caused by distributed effects such as depth-
of-field and motion blur. Our pre-filtering improves the fil-
tering quality of state-of-the-art filtering methods by gener-
ating filtered G-buffers in terms of numerical accuracy and
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Figure 12: rMSE convergence graphs. These graphs are
generated using the rMSE numbers in Table 1.

visual quality, and this improvement is achieved by seamless
integration.
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Appendix A: Computing the divergence.

9Pk
af’(‘.k
Eq. 6, where P and P.; denote the k-th elements in the

vectors Pe and P, respectively. Given our pre-filtering equa-
tion (Eq. 5), the partial derivative term can be computed by
the quotient rule:

af’ck 1 9 ow
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We compute the divergence term div(pc) = 2,321 in

where w; = w(P;, Pc). In the equation above, the derivative
ow;
ek

of the weight function (Eq. 3) is computed as the fol-

lowing:

ow; 1, - 1\ /5 =
3~ 2 Sek ) (Bi— o) wi, ®)
c,

where S;kl and S;,(l are the k-th row vectors in the inverse

covariance matrices S; and A\ ! respectively. We plug this
derivative into the equation (Eq. 7), and achieve the final
equation by applying some elementary manipulations:
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Appendix B: Calculating the per-pixel covariance.

We calculate the 3 x 3 covariance matrix S¢ (in Eq. 4) at
each pixel ¢ based on the world position samples s. ; (Eq. 2).

Let us define SZ’I as the element at r-th row and /-th column
in the matrix, and this value can be computed:

B ! )
rl Z;ZI (Sg,j _Eg,j)(sc,j _sc,j)
g =

ne

S, ; (10)

where the s/, ; and Si, j are the r-th and /-th element in the
vector s, j, respectively. Also, the & ; and s j are the sample

means of s;. ; and slc‘j.
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