International Journal of

HIGH PERFORMANCE

Original Article COMPUTING APPLICATIONS

The International Journal of High
Performance Computing Applications
1-24

© The Author(s) 2014

Reprints and permissions:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/1094342014532965
hpc.sagepub.com

®SAGE

Applying semi-synchronised task
farming to large-scale computer vision
problems

Steven McDonagh, Cigdem Beyan, Phoenix X Huang
and Robert B Fisher

Abstract

Distributed compute clusters allow the computing power of heterogeneous (and homogeneous) resources to be utilised
to solve large-scale science and engineering problems. One class of problem that has attractive scalability properties, and
is therefore often implemented using compute clusters, is task farming (or parameter sweep) applications. A typical char-
acteristic of such applications is that no communication is needed between distributed subtasks during the overall com-
putation. However, interesting large-scale task farming problem instances that do require global communication between
subtask sets also exist. VWe propose a framework called semi-synchronised task farming in order to address problems
requiring distributed formulations containing subtasks that alternate between independence and synchronisation. We
apply this framework to several large-scale contemporary computer vision problems and present a detailed performance
analysis to demonstrate framework scalability.

Semi-synchronised task farming splits a given problem into a number of stages. Each stage involves distributing inde-
pendent subtasks to be completed in parallel and then making a set of synchronised global operations, based on informa-
tion retrieved from the distributed results. The results influence the following subtask distribution stage. This subtask
distribution followed by result collation process is iterated until overall problem solutions are obtained. We construct a
simplified Bulk Synchronous Parallel (BSP) model to formalise this framework and with this formalisation, we develop a
predictive model for overall task completion time. We present experimental benchmark results comparing the perfor-
mance observed by applying our framework to solve real-world problems on compute clusters with that of solving the
tasks in a serial fashion. Furthermore by assessing the predicted time savings that our framework provides in simulation
and validating these predictions on a range of complex problems drawn from real-world computer vision tasks, we are
able to reliably predict the performance gain obtained when using a compute cluster to tackle resource intensive com-
puter vision tasks.

Keywords
Vision, task farming, semi-synchronised

1999, 2000). Trivial task farming is a common form of
parallelism and relies on the ability to decompose a
problem into a number of nearly identical yet indepen-
dent tasks. Each processor (independent node) runs a
local copy of the serial code, often with its own input
and output files, and no communication is required
between these processes. This form of task farming is
well suited to exploring large parameter spaces or large

| Introduction

Many computational tasks that employ serial code are
limited by the total CPU time that they require to exe-
cute. When the individual tasks that make up an over-
all computation are independent of each other it is
possible that they run simultaneously (in parallel) on
different processors. Using this approach has the
potential to greatly reduce the wall-clock time (real-
world time elapsed from process start to completion)
needed to obtain scientific results. Distributing separate
runs of the same code while varying model parameters

University of Edinburgh, UK

Corresponding author:

or input data in this way is known as task farming and
has been the focus of much work of both cluster and
grid computing (Silva et al., 1993; Casanova et al.,

Steven McDonagh, 10 Crichton Street, Edinburgh, EH8 9AB, United
Kingdom.
Email: s.g.mcdonagh@sms.ed.ac.uk

2 The International Journal of High Performance Computing Applications

independent data sets. On the assumption that all tasks
take a similar amount of time to complete then there
are no load imbalance issues and linear scaling can
often be achieved in relation to the number of proces-
sors employed.

Many interesting problems do however require some
level of communication between tasks during distribu-
ted execution. In this work we develop a framework to
enable semi-synchronised task farming in which an over-
all computation involves distributing many sets of par-
allel tasks such that all tasks within a set are
independent, yet these tasks must finish before a fol-
lowing task set is able to begin execution. Taking into
account a level of communication between tasks has
been approached previously with a focus on (e.g.) the
scheduling aspects of aperiodically arriving non-
independent tasks (Abdelzaher et al., 2004), data sta-
ging effects on wide area task farming (Elwasif et al.,
2001) and cost-time optimisations of task scheduling
(Buyya et al., 2002). Given that we propose to handle
global communication between task sets with a post
task set completion synchronisation step after a round
of concurrent computation, components of the Bulk
Synchronous Parallel (BSP) model are a suitable basis
for our framework. The BSP model is a bridging model
originally proposed by Valiant (1990) and further detail
of how to realise our framework and hybrid time pre-
diction model is provided in Section 3.

Numerical algorithms can often be implemented
using either task or data parallelism (Hillis et al., 1986;
Foster, 1994). Task farming algorithms can be consid-
ered a simple subset of task parallel methods that break
a problem down into individual segments, such that
each problem segment can be solved independently and
synchronously on separate compute nodes. The task
parallel model typically requires little inter-node com-
munication. Data parallel models conversely share large
data sets among multiple compute nodes and then per-
form similar operations independently on the partici-
pating nodes for each element of the data array. Data
parallelism therefore typically requires that each proces-
sor performs the same task on different pieces of the
distributed data. In this way, HPC data parallelism
often results in additional communication overhead
between nodes and requires high bandwidth and low
latency node connectivity. In practice most real parallel
computations fall somewhere on a spectrum between
task and data parallelism. This is also true of the task
farming framework that we introduce (see Section 3).

Computer vision, like many fields, contains algo-
rithms that are challenged by the size of the data sets
worked with, the number of parameters that must be
estimated or the requirement of highly accurate results.
These requirements often result in computationally
expensive algorithms that demand time consuming
batch processing. One efficient solution for accelerating

these processes involves executing algorithms on a clus-
ter of machines rather than on a single compute node
or workstation. Our semi-synchronised task farming
framework provides a simple form of parallel computa-
tion that is able to reduce the wall-clock time required
by such computationally expensive tasks that might
otherwise take several hours, days or even weeks on a
single workstation.

Here we choose computer vision applications as the
test bed for our framework. Once an algorithm has
been formulated under our framework, we use simple
performance modelling to accurately predict overall
computation time and therefore the likely speed-up
made possible by employing a distributed implementa-
tion over a serial approach. In this way we provide a
framework that enables the straightforward task distri-
bution for problems, comprised of many individual
tasks that likely require communication upon comple-
tion, coupled with a modelling process capable of pre-
dicting the available speed benefit of instantiating the
distributed implementation.

Our contributions in this paper can be summarised
as follows:

e We introduce a simple framework for non-
independent task farming based on the BSP model
(Valiant, 1990). The framework allows us to formu-
late problems by dividing them into many indepen-
dent parallel tasks that also require some level of
communication and synchronisation between tasks
before an overall solution to the problem can be
obtained.

e As part of this framework we develop a
computation-time model capable of predicting
overall application completion time for problems
that are formulated using the task farming frame-
work that we introduce. Providing this simple tool
affords a method to reliably predict time require-
ments and evaluate computation-time and solution-
quality trade- offs prior to runtime.

e We apply our semi-synchronised task farming
framework to three contemporary computer vision
problems and report on our experiences of imple-
menting distributed solutions to these problems,
and explore predicted and experimental speed-up
available when deploying these implementations on
an HPC cluster.

The HPC system that we make use of experimentally
is described in Section 3.1. We outline our task farming
framework and relate it to the BSP model in Section 3.3.
We then introduce performance modelling techniques to
facilitate predictions about computational time required
for problems formulated under our framework in the
remaining part of Section 3. Results from simulation
experiments that verify our predictive model are given in

McDonagh et al.

Section 4. Section 5 details the results of implementing
several real-world computer vision applications under
our framework and these are compared to sequential
implementations of the equivalent problems. Finally
Section 6 provides some discussion.

2 Related work

The task farming model of high-level parallelism has
been the basis for much HPC cluster based work with
recent examples utilising HT Condor (Thain et al.,
2005), Google’s MapReduce (Dean and Ghemawat,
2008) and Microsoft’s Dryad (Isard et al., 2007). The
HT Condor framework is able to harness idle cycles
from both a network of non-dedicated desktop work-
station nodes (cycle scavenging) and dedicated rack-
mounted clusters. The framework then employs these
cycles to run coarse-grained distributed parallelisation
of computationally intensive tasks. Task farming is also
common in data centres, for example MapReduce and
Dryad both make use of task farming to schedule par-
allel processing on large terabyte scale datasets. In sys-
tems such as these a master process manages the queue
of tasks and distributes these tasks amongst the collec-
tion of available worker processors. The master process
is typically also responsible for handling load balancing
and worker node failure. In the current work, master
and worker node interaction is handled by the Sun
Grid Engine (SGE) (Gentzsch, 2001) using a batch
queue system similar to the Condor framework. This
queueing system is responsible for accepting, scheduling
and managing the distributed execution of our parallel
tasks. This approach allows the distribution of arbi-
trary tasks as there is no requirement for a specialised
API. Using SGE to manage our task queueing system
allows our developers to concentrate on the image pro-
cessing aspects of the problems that we investigate.

Using the SGE environment, jobs typically request
no interaction during execution unless they contain the
integrated ability to find their interaction partners from
their dynamically assigned worker node. The semi-
synchronised task farming model that we build on top
of the SGE layer respects this such that only after a set
of tasks has completed are results collated to make
decisions regarding the distribution and form of the fol-
lowing set of tasks. In standard task farming, when a
worker node completes a task it will request another
from the master node, and our framework also does
this until all tasks in a rask set are processed. Once all
tasks in a task set are finished, the results are collated
before the following set of tasks are defined and distrib-
uted. In comparison to standard task farming, many
task sets likely contribute to a single overall computa-
tion under our framework.

Dedicated parallel computer architecture has also
been employed to develop computer vision systems. In
(Revenga et al., 2003), a Beowulf architecture dedicated

to real-time processing of video streams for embedded
vision systems is proposed and evaluated. The parallel
programming model made use of is based on algorith-
mic skeletons (Cole, 1991). Skeletons are higher-order
program constructs that encapsulate common and
recurring forms of parallelism to make them available
to application developers. Skeleton-based parallel pro-
gramming methodology offers a partially automated
procedure for designing and implementing parallel
applications for a specific domain such as image pro-
cessing. An application developer provides a skeletal
parallel program description, such as a task farm, and
a set of application specific sequential functions to
instantiate the skeleton. The system then makes use of
a suite of tools that turn these descriptions into execu-
table parallel code. The system in Revenga et al. (2003)
was tested by implementing simple image processing
algorithms such as a convolution mask and Sobel filter.

In comparison to classical HPC applications,
embedded computer vision on dedicated parallel
machines will often be able to offer advantages such as
mobile, real-time performance yet places demands on
programmers if no high-level parallel programming
models or environments are available, such as skeletons
or the SGE that we make use of in this work (see Section
3.1 for further details). If these tools are not available
then programmers must explicitly take into account all
low-level aspects of parallelism such as task partitioning,
data distribution, inter-node communication and load
balancing. If developer expertise lies in (for example)
image processing, rather than parallel programming,
then accounting for these low-level considerations likely
results in long and error-prone development cycles.

In contrast to Revenga et al. (2003), here we perform
task farming as opposed to low-level data parallelism
involving geometric partitioning of images for image
processing tasks. This results in a coarser level of
abstraction that we apply to higher-level computer
vision problems involving much larger data sets where
we do not regard real-time performance as a critical
factor. It is for this reason that we consider the BSP
model a good basis for our framework. The original
BSP model considers computation and communication
at the level of the entire program. The BSP model is
able to achieve this abstraction by renouncing locality
as a performance optimisation (Skillicorn et al., 1997).
This in turn simplifies many aspects of algorithm
design and implementation and does not adversely
affect performance for most application domains. Low-
level image processing however is an example domain
for which locality might be critical, so a BSP based
framework is likely not the best choice.

Parallel and distributed computing systems are
designed with performance in mind, and significant pre-
vious work has been carried out developing approaches
for performance modelling and prediction of

4 The International Journal of High Performance Computing Applications

applications running on HPC systems. In addition to
the BSP inspired framework that we build on top of the
SGE layer, we also formulate application performance
modelling allowing us to predict the run time perfor-
mance of the parallel algorithms implemented with our
framework. Application performance modelling
involves assessing application performance through sys-
tem modelling and is an established field (Hammond et
al., 2010). Several examples of where this approach has
proven advantageous include: input and code optimisa-
tion (Mudalige et al., 2008), efficient scheduling
(Spooner et al., 2003) and post-installation performance
verification (Kerbyson et al., 2005). The process of mod-
elling itself can be generalised to three basic approaches;
modelling based on analytic (mathematical) methods,
(e.g. LoPC (Frank et al., 1997)), modelling based on
tool support and simulation (e.g. DIMEMAS (Labarta
et al., 1997), PACE (Nudd et al., 2000)), and a hybrid
approach which uses elements of both (e.g. POEMS
(Adve et al., 2000), Performance Prophet (Pllana and
Fahringer, 2005)). In this work we also choose a hybrid
approach and combine basic analytical modelling inher-
ited from the BSP model with traditional code profiling;
details of our performance modelling approach are pro-
vided in the following section.

3 Semi-synchronised task farming
3.1 HPC experimental implementation

In this work we make use of the Edinburgh Compute
and Data Facility (ECDF; see http://www.wiki.ed.
ac.uk/display/ecdfwiki/) to test the parallel implementa-
tions of the computer vision problems that we investi-
gate. The ECDF is a Linux compute cluster that
comprises of 130 IBM iDataPlex servers, each server
node has two Intel Westmere quad-core processors
sharing 24 GB of memory. The system uses SGE as a
batch queueing system. By tackling computer vision
problems through parallel computation with SGE we
show that increasing the number of participating pro-
cessors reduces the wall-clock time required for algo-
rithms implemented under our semi-synchronised task
farming framework (see Section 5 for experimental
details). All algorithms are implemented in MATLAB
and computation times are recorded using the built-in
MATLAB command cputime. We report on the sav-
ings due to application speed-up in terms of reduced
execution time when running our parallel implementa-
tions using many processors compared to employing
sequential implementations to perform the same tasks.
Our parallel implementations make use of the
Distributed Computing Engine (DCE) and Distributed
Computing Toolbox (DCT) from MathWorks. These
products offer a user-friendly method of parallel pro-
gramming such that master-slave communication
between cluster machines is hidden from the developer,

allowing them to focus on domain specific aspects of
each problem. Our task farming framework is language
independent and we concede that problem instance wall-
clock times can likely be reduced further by making use
of (e.g.) an alternative compiled language. However the
primary focus of the current work is to provide evidence
that the proposed framework is able to formulate prob-
lems consistently and reduce wall-clock times predicta-
bly, compared to the related serial implementations,
regardless of the language used. We leave a study of time
critical applications benefiting from (e.g.) compiled lan-
guages like C/C++ to future work.

3.2 The Bulk Synchronous Parallel model

The BSP model is a bridging model originally proposed
in Valiant (1990). It is a style of parallel programming
developed for general purpose parallelism, that is paral-
lelism across all application areas and a wide range of
architectures (McColl, 1993). Intended to be employed
for distributed-memory computing, the original model
assumes a BSP machine consists of p identical proces-
sors. The related semi-synchronised farming framework
we propose (Section 3.3) does not strictly enforce a
homogeneous resource requirement in comparison.
This enables our experimental setup, using IBM
iDataPlex servers, to contain similar but not necessarily
identical nodes. In accordance with the original BSP
model we do assume homogeneous resources during
our theoretical performance modelling for simplicity,
and we therefore leave a heterogeneous performance
modelling treatment to future work. In the original BSP
model, each processor has access to its own local mem-
ory and processors can typically communicate with
each other through an all-to-all network. In this work
we make the simplifying assumption that processes only
contribute information to a global decision making pro-
cess at the end of each set of tasks and therefore do not
need to communicate with each other directly. A BSP
algorithm consists of an arbitrary number of supersteps.
During supersteps, no communication between proces-
sors may occur and all processes, upon completing their
current task must then wait at a barrier. Once all pro-
cesses complete their current task a barrier synchronisa-
tion step occurs and then the next round of tasks
(superstep) can begin. In this fashion a BSP computa-
tion proceeds in a series of global supersteps and we uti-
lise these supersteps to model sets of parallel distributed
tasks in our framework. To summarise, a superstep
typically consists of three components:

1. Concurrent computation: Computation takes place
on each of the participating processors p.
Processors only make use of data stored in the
local processor memory. Here we call each inde-
pendent process a task. These tasks occur asyn-
chronously of each other.

McDonagh et al.

2. Communication: Processors exchange data between
each other. Our framework makes the simplifying
assumption that tasks do not need to exchange data
with each other individually, yet the result of each
local computation contributes to the following
Barrier synchronisation step (global decision mak-
ing). This assumption holds for each computer
vision application that we investigate (see Section 5).

3. Barrier synchronisation: When each task reaches
this point (the barrier), it must wait until all other
tasks have finished their required processing. Once
all rasks have completed, we make a set of global
decisions before the next superstep may begin (the
next round of concurrent computation and so on).

3.3 Proposed task farming framework

As noted, our framework involves global communica-
tion between rask sets during a post task-set-completion
synchronisation step following a round of concurrent
computation. The components and fundamental prop-
erties of the BSP model provide a suitable basis for this
framework. Namely moving from a sequential imple-
mentation to describe the use of parallelism with a BSP
model requires only a bare minimum of extra informa-
tion be supplied. BSP models are also independent of
target architecture, making a task farming framework
based on BSP portable between distributed architec-
tures. Finally the performance of a program distributed
using a BSP based framework is predictable if a few
simple parameters from the target program can be pro-
vided (e.g. task-length distribution parameters). This
leads to a hybrid performance modelling technique
capable of predicting the runtime of algorithms imple-
mented with our framework.

We solve large scale problems by sharing large
data sets among multiple processors yet the semi-
synchronised task farming framework, in consonance
with a task parallelism model, involves only little inter-
node communication between tasks running in parallel.
However, similar to data parallelism models, the frame-
work allows us to split these large data sets between
compute nodes and perform independent calculations
on participating processors in parallel. As the calcula-
tions within each task are independent, no information
needs to be exchanged between nodes during task run-
time and sharing of results is postponed until all tasks
in a set have completed. As discussed, once a set of
tasks has been completed we are able to collate results
and use this information to make decisions relating to
how the following round of tasks should be formu-
lated. The outputs from the final round of tasks are
combined to provide the global program output. This
framework is formally defined in the following pseudo-
code and Figure 1 depicts the process in diagrammatic
form.

Superstep,

Distributed task,, . . . Distributed taskwn1

Superstep,

Distributed task,,o . . . Distributed taskw“2

Superstep,

Distributed task,,, . .

. Distributed taskw"s

Super<steps

Figure 1. Our semi-synchronised task farming framework. Light
grey superstep nodes indicate task synchronisation and collective
global decisions based on information obtained from the
previous set of distributed tasks. These decision points influence
the input data, form (and possibly the number) of the following
set of distributed tasks. Each task in a task set is distributed to
an individual processor. The distributed tasks following each
superstep are not regarded as having a particular linear order
(from left to right or otherwise) and may be mapped to
processors in any way.

Let
{I } | be the set of &, input tasks at superstep ¢

{01[; }fv’: ,be the set of N, outputs gained from the tasks
completed at superstep ¢
Input:
Ny tasks at superstep t = 0
terminate : = 0
begin
while (NOT terminate)
parallel for i € N,
o)’ = process(l,-[t])
end
{_Ft:+11 pasE recompute -inputs({Z;],1} o
{O 1}N’ 1)termlnate = test_termination_
crlterla({O,» }fv’: DE=1t+1
end
last = t
R = combine_ outputs({O
end
Output:
R

[last]\ Nius
dS }]:tl)

6 The International Journal of High Performance Computing Applications

The advantage of adding the BSP synchronisation
step between task sets allows all tasks in a set the
opportunity to collate and communicate information
resulting from the completion of their collective execu-
tion. The collective results of a task set can influence
decisions involving the form, model parameters and
possibly the number of tasks making up the following
task set input. Once formulated, the following set of
tasks can be distributed to the participating processors.
It is this process of dispatching multiple rounds of par-
allel independent tasks, where task formulation may be
influenced by information from previous task set
results, that we call semi-synchronised task farming.
This approach allows us to find distributed solutions to
non-trivial problems that require a level of communica-
tion between nodes during overall computation while
retaining much of the simplicity of the standard task
farming model. If all tasks within a task set take a simi-
lar amount of time to complete then it allows for simple
modelling and task distribution. If however tasks exhi-
bit completion times with high variance, then a smart
scheduler (such as SGE) can still be used efficiently to
ensure that load balancing is not problematic for our
framework. The wall-clock time, now related to both
the number of task sets and the number of available
processors, is much improved over serial
implementations.

The synchronisation aspect allows us to solve prob-
lem decompositions that require a level of inter-node
communication while retaining the main advantages of
a standard task farming approach, such as ease of
implementation, level of achievable efficiency (on the
assumption that individual tasks in a set require similar
time to complete) and, given that existing serial code
can often be used with minimal modification, that users
can produce solutions without requiring detailed
knowledge of (e.g.) MPI techniques. We do however
note that if tasks take widely different amounts of exe-
cution time then the total wall-clock time of a task set
is governed by the slowest process.

3.4 Simulation and analytical hybrid performance
modelling

We undertake simple performance modelling to evalu-
ate the distributed job submission behaviour on a CPU
cluster allowing prediction of the run time performance
of algorithms realised with our framework.
Performance modelling of distributed systems enables
an understanding of code and machine behaviour and
can be broadly split into two categories; analytical
modelling and simulation based techniques. As previ-
ously mentioned, analytical models are typically devel-
oped through the manual inspection of source code
and subsequent formulation of critical path execution
time. This approach usually involves the

implementation of a modelling framework (e.g. LoPC
(Frank et al., 1997)) to reduce the work required by the
performance modeller. Analytical approaches are effec-
tive yet often require manual analysis of source code
necessitating knowledge of the task domain, implemen-
tation languages and communication paradigms.

Here we follow a coarse grained alternative
approach of simulation based performance modelling.
Many simulation tools exist to support this form of
performance modelling (e.g. the DIMEMAS project
(Labarta et al., 1997)). Such tools often involve replay-
ing the code being modelled instruction-by-instruction,
and the related use of machine resources can then be
gathered by the simulator. More recent work such as
the WARPP toolkit (Hammond et al., 2009, 2010)
make use of larger computational events (as opposed
to instruction based simulation) improving simulator
scalability. Here we take a similar approach; instead of
using single application instructions we model coarse
grained computational blocks. We choose a coarse level
of granularity by defining a computational block as
one distributed task in our framework. We then obtain
run times for these computational blocks through tra-
ditional code profiling. An additional advantage of this
coarse-grained simulation is that hybrid models (com-
bining analytical and simulation-based approaches) can
be built. By combining these coarse-grained computa-
tional events with an analytical model typical of the
Bulk Synchronous Parallel (BSP) (Valiant, 1990) model
we obtain a straightforward hybrid model capable of
predicting application run-time for the algorithms that
we implement using our task farming framework.

3.5 BSP cost in relation to task farming

The cost of an algorithm represented by the BSP model
is defined as follows. The cost of each superstep is
determined by the sum of three terms; the cost of the
longest running local task w;, the global communica-
tion cost g per message between processors, where the
number of messages sent or received by task i is &;, and
the cost of the barrier synchronisation at the end of
each superstep is / (which may be negligible and there-
fore the term is dropped).

The cost of one superstep for p processors is
therefore:

max{_ | (w;) + maxy_ (hg) + I (1)

We make standard simplifying assumptions that we
have homogeneous processors and that tasks do not
need to exchange data with each other individually or
with the master node during each superstep thus ensur-
ing that #; = 0 for all i. We assume homogeneous pro-
cessors for simplicity during our cost treatment but
note that, in the current landscape of computation, het-
erogeneous resources are also common. Although our

McDonagh et al.

framework is applicable to heterogeneous resources in
practice, we leave a theoretical treatment of heteroge-
neous processor cost to future work (see Section 4 for
related discussion of this point). It is common for equa-
tion (1) to be written as w + hg + / where w and % are
maxima, and with our simplification this reduces fur-
ther to w + [. The cost of the algorithm then, is the
sum of the costs of each superstep where S is the num-
ber of supersteps required.

S
W+ Hg+SI=> w,+0+SI (2)
s=0

3.6 Our hybrid BSP simulation

We simulate total parallel algorithm execution times by
firstly generating random trials to simulate individual
distributed task timings. To simulate a real-world task
set, we generate trials from a Gaussian distribution
parametrised by the mean time required in practice for
a single distributed task to complete and add these to
the time cost of barrier synchronisation. Task timing
distribution parameters are found through code profil-
ing and making use of the MATLAB function cputime.
We assert that this is a reasonable method to simulate
task timings as the task farming applications that we
investigate all distribute sets of similar length tasks dur-
ing each superstep. By specifying or observing the

number of supersteps required for a given real-world
computation and the number of distributed tasks
required in each superstep, we are able to approximate
the total time required by the parallel algorithm as:

S
ZWS+SI (3)
s=0

where wy is the longest running local task in superstep s,
barrier synchronisation time cost is / and the total num-
ber of supersteps is S. In practice we run this simulation
over many trials and look at the mean result for an
algorithm that requires N; distributed tasks during each
superstep.

3.6.1 Limitless CPU node model. As a simple example we
take a mean task length of w, = 10 time units and a
task length standard deviation of o = 1, and simulate
an application making use of only a single superstep.
We find that, using the additional assumption of limit-
less computational nodes, as we increase the number of
distributed tasks required in the superstep the difference
between the longest task length w, and the mean task
length w,, grows sub-linearly with the number of sub-
mitted distributed tasks N (Figure 2). From this simple
example we are able to conclude that, not taking into
account limited computational resources, if we have an
application that benefits from increasing the number of

Mean task length w, = 10 task std dev o =1
as
——Simulation: max task length — mean: wg-w,
-------- Simulation: standard deviation ol wy
s| —NModel: 140 -erfc(3)
X
7
s
3
8 &
v 8
2 H
v
53
=@
1 L L L | 1 Il L Il 1
0 50 100 150 200 250 300 350 400 450 500
Number of parallel tasks (N)
Figure 2. Predicted difference between maximum distributed task time and mean task time w; — w,,, where w, = 10, o = |, for an

algorithm distributing N tasks in one superstep.

8 The International Journal of High Performance Computing Applications

distributed tasks during a superstep (e.g. by an order of
magnitude — see for example Section 5.1), we can expect
improved results for only a small increase in predicted
wall-clock time cost.

We can fit this simulated computation time accu-
rately using the standard inverse complementary error
function. The complementary error function erfc (also
known as the Gaussian error function) provides us with
an accurate predictor for the maximum job length wy
increment over the mean job length w,, in relation to
the number of submitted jobs, that we are likely to
observe assuming that the true job length distribution
resembles a Gaussian distribution. The erfc function is
often used in statistical analysis to predict the beha-
viour of any sample with respect to the population
mean. Here we fit our simulation data by applying the
inverse erfc to N% , where Ny is the number of sub-
mitted tasks in superstep s (see Figure 2). The error
function erf'is defined as:

2 (F .
erf(x) = —J e "dt
V7)o
Then the complementary error function, denoted erfc
and its inverse erfc~! are defined as:

erfe(x) = 1 —erf(x) = 2 [e Cdt
erfc!(1 — x) = erf '(x)

The model that empirically fits the simulation for mean
task length w,, with standard deviation o distributing
N; tasks in parallel, lets us predict the maximum task
time wy for superstep s as:

Wy = w, + (1.40- . erfcl(Ni)) (4)

The scalar 1.4 is needed to fit our empirical data. We
hypothesise that the true scalar value providing the best
fit to our empirical curve here is v/2 but we leave investi-
gation of this to future work. In Figure 2 we use
w, = 10 and o = 1 and simulate for various task set
sizes Ny. If computational resources are not a limiting
factor, then once we know the number of distributed
tasks Ny required per superstep, and have estimates for
w, and o, we are able to approximate the expected time
wy required for a single superstep of a given algorithm
and, given the number of supersteps, the expected time
required for the entire algorithm. This model is valid in
cases where the number of available parallel worker
processors is equal to or exceeds the number of tasks
required per superstep. We have access to 130 iDataPlex
servers with multiple CPUs; however in many practical
applications this requirement will not hold (the number
of tasks per superstep will exceed available participating
worker nodes). Therefore we also consider a finite CPU
model in the following section.

3.6.2 Finite CPU node model. The previous simulation
model does not take into account CPU worker node
limits. In this section additional simulations are per-
formed to explore the effect of capping the number of
available CPU nodes K in relation to the number of
submitted distributed tasks per superstep N;. This
allows us to fit a model that reflects our real distributed
system pragmatically. In this case, we assume that
N; > K and therefore each CPU node is responsible for
the computation of a number of tasks in sequence in
order to complete a superstep. In our task farming
framework under SGE, when a CPU worker node
completes the computation of the current task then the
next task from the set still waiting to be processed will
be assigned to the finished core such that each core is
continually utilised until all tasks have been processed.
For each simulation trial, the maximum cumulative
CPU computation time used by a worker node during
a superstep; CPU; must now be found. This value is
the maximal sum of task computation times assigned
to an individual CPU. From this max cumulative com-
putation time found during a superstep, we subtract
w, - (&) where w, is the mean task length, Ny is the
number of parallel tasks making up the superstep and
K is the number of participating processors. This effec-
tively subtracts the mean amount of work we expect a
CPU to perform per superstep. This mean amount of
work per CPU is denoted CPU,, = w,, - (%) . The result-
ing difference tells us how much more work, than the
mean cumulative work, we expect the node assigned the
most work to carry out. As a result, CPU; provides the
time we expect the full superstep s to take to complete.

The final point above holds because all CPU worker
nodes must be allowed to finish their assigned cumula-
tive task computation before it is possible to synchro-
nise and conclude a superstep s. When accounting for a
finite set of CPU worker nodes, we therefore model the
time it takes to complete a superstep s as the longest
cumulative CPU computation time CPU,. When
accounting for a fixed number of worker nodes K, the
model that we find (approximately) empirically fits the
simulation data is:

wy - (SEmSIOED) i mod(Ny, K) # 0
W () + Lo -erfe ! (1) if mod(V,. K) = 0
(5)

We model CPU as the mean computational work
done at each worker, CPU,, plus some additional work
that must be carried out by the CPU that has per-
formed the most work in the current superstep. We
model this additional work in the following way: when
we consider a finite set of CPU worker nodes, the dif-
ference between the longest cumulative CPU computa-
tion time CPU,; and the mean cumulative CPU
computation time CPU,, is primarily influenced by: (a)

CPU;, =

McDonagh et al.

how evenly the number of distributed tasks Ny are dis-
tributed to the number of participating CPU nodes K
and (b) the mean task length w,. Advanced task farm
models (e.g. Poldner and Kuchen, 2008) employ vari-
ous strategies dictating how tasks should be distributed
to workers. Here we take the simple approach that, on
the assumption that tasks belonging to a task set have
similar length, each task still waiting to be processed
will be assigned in turn to the CPU worker node that
finishes its current computational work load first. A
consequence of this is that if the total number of dis-
tributed tasks N, required by the superstep is exactly
divisible by the number of participating CPU nodes K
(i.e. mod(Ny, K) = 0) then, excluding cases involving
extremely high task length variance o in relation to
wy, each CPU will receive an identical number of tasks
and therefore the difference between the longest cumu-
lative CPU computation time CPUj and the mean time
CPU,, will be small and only influenced by the number
of tasks Ny and the task length variance ¢ in a similar
fashion to the limitless worker node model. In such
cases this small difference is once again accounted for
using the erfc™! function as before (see Figure 2 and
equation (4)). If, contrarily, the number of tasks Nj
divided by the number of participating CPU nodes K
leaves a remaining number of tasks that is small in rela-
tion to K (i.e. mod(Ny, K) < K) then, again assuming
moderate task length variance o in relation to wy, the
CPU node completing the most computational work

will contain one more task than L(%)j We account for
this additional task in our model by adding the mean
task length w, (our additional task) to the mean cumu-
lative work done, adjusted by the number of CPU
worker nodes that are assigned an additional task such
that they must complete | (%) | + 1 tasks in total. This
models the fact that the difference between CPU, and
CPU, will be greater when fewer worker nodes are
assigned [(%)) + 1 tasks to complete, since the true
mean work done per CPU will be close to w, - [()]
when many nodes are completing only |(%)] tasks.
The difference between CPU, and CPU,, is therefore
essentially linear in mean task length w, once N;, K
and o are known. Intuitively, if mod(N,, K) is low but
non-zero (e.g. equal to one), then the single CPU that
is assigned this extra task will be required to complete
almost exactly one extra task length of work in com-
parison to the mean amount of work, CPU,~w,-
L(%)]. As mod(N;, K) grows, the value representing the
mean amount of work done per CPU is adjusted
accordingly. The special case where mod(N,, K) = 0 we
expect, as discussed previously, only adds a constant
amount of excess work above the mean for large N
similar to the case explored previously using an
unbounded K (see Section 3.6.1). We validate this
model using empirical simulation data for various K
and task length w,. A sample of these simulation and
model prediction results, exploring simulated and pre-
dicted times for various K are found in Figure 3.

CPU ; simulation time and CPU; , CPU, model times
10° Num tasks N = 250 / Mean job length = 1000 / Task std dev o = 1
—CPU, Empirical simulation

—CPU, Model = w,, - §¢

o CPU, Model = w, + (2

K

mod(N., I\’)) il
n

Computation time (log-scale)

0 50 100 150 200
Number of CPU nodes K

(@)

250 ! 50 100 150 200 250

Simulation CPU, - model CPU,
Num tasks N = 250 / Mean job length = 1000 / Task std dev o = 1

—e—Simulation CPU, — model CPU

Simulation CPU; — Model C PU, (linear-scale)

Number of CPU nodes K

(b)

Figure 3. (a) We plot the model of the mean work we expect each CPU to carry out CPU,, (blue line) in terms of overall (log-
scale) computation time units for varying K processors. We show using empirical simulation (red line) how the longest CPU queue
CPU; deviates from this value in practice in relation to Ns and K. Our model prediction of the maximum work carried out by a CPU:
‘CPUs Model’ (circles plotted for every 10th K value) exhibits how our model is able to account for this. Here we show a simulation
distributing N = 250 tasks over one superstep with a mean task length of w, = 1000, o = I. (b) The difference found between
model prediction of CPU; and empirical simulation for each value of K € {1...250}. We exhibit model prediction error of <10 time
units (y-axis) when using a mean job length w,, = 1000 units for each value of K explored. Our prediction makes small periodic
errors but this error reduces further as K increases. For the number of CPUs that we make use of in practice (e.g. >20) we see an
overall computation time prediction error of <4 time units when using w,, = 1000 units.

10 The International Journal of High Performance Computing Applications

[[Individual task times
-------- GEV p=408.6 0 = 58.8 k = 0.29

=—Normal dist @ = 462.9 o = 107.1

s
s,
e

Parallel tasks

ua 1
1000 1200 1400 161

Figure 4. Individual parallel task timings across all 10 supersteps from one trial.

4 Hybrid BSP model predictions

In this section, we use our hybrid BSP model (intro-
duced in Sections 3.6.1 and 3.6.2) to predict the
expected run time of real-world applications that we
distribute to our SGE cluster under our task farming
framework. We present the results of submitting jobs
under real network and Grid Engine loading conditions
and compare job timing results with our predictions to
test the validity of the models developed in Section 3.6.

We submit various application configurations to our
SGE cluster that involve distributing N; = 20, 40 and
100 tasks during each superstep in applications making
use of § =15, 10 and 30 supersteps. The applications
that we utilise for testing our model contain parallel
tasks with cost durations of comparable length by
design. Details of the applications we experiment with
are given in Section 5. To calculate true overall applica-
tion time cost we record individual parallel task run
times and are therefore able to find the longest running
(highest cost) task within each superstep. We then sum
the times required for the longest running task w; in

s
each superstep s such that > w, + SI provides the total

time needed to execute thé pgrallel application in prac-
tice, assuming that all tasks within a superstep are able
to run in parallel. With regard to the sample applica-
tions that we investigate during this experiment we find
that the time cost for the barrier synchronisation steps /
are negligible in practice, and therefore we neglect these
in the runtime calculation. Although barrier synchroni-
sation is negligible in the sample application

investigated here, we note that this is certainly not
always the case, and we therefore choose not to over-
simplify the model.

We perform repeated trials (n = 10) for each appli-
cation configuration tested. Here we provide detail of a
configuration distributing Ny = 20 tasks during each of
10 supersteps as an example. In this exagnple, we mea-

sure mean total real-world cost to be Y. w, = 123.06

min of parallel computation time with Saﬁoaverage task
length of w, = 462.9 s (~8 min), and a mean parallel
task length standard deviation of o = 107.13 s. The
recorded individual task times, across all 10 supersteps
from one trial, are shown in Figure 4. Examining the
real-world run times of the distributed tasks highlights
a slightly heavy-tailed distribution for the particular
application employed in this experiment. This typically
results in several long runtime outliers that contribute
to the total runtime cost using our overall runtime cal-
culation method. For expository purposes we also fit a
GEV (Generalised Extreme Value) model to the data
here, providing a reasonable fit (i.e. resulting in a
slightly lower BIC value of 2343.39 compared to the
Gaussian BIC of 2446.78 for this data set). In future
work we plan to re-examine our hybrid model using
(e.g.) a GEV distribution in place of our current
Gaussian timing model to predict run times in cases
where this provides a better fit to the independent task
times. We also note that one potential route towards
accounting for heterogeneous participating processors
p during runtime prediction would involve making use
of mixture distributions (e.g. a mixed GEV

McDonagh et al.

distribution). We leave more sophisticated task time
distribution fitting to future work. We obtain individ-
ual runtime costs by profiling the application (detailed
in Section 5.1) through the use of the MATLAB func-
tion cputime. By additionally including SGE queue-
ing (non-working) time, mean wall-clock time for the
application run in this example was 173.46 min (non-
working time is attributed to sharing the SGE cluster
with other users).

Using the distributed task model that we introduce
in equation (5), and assuming that we have sufficient
participating processors K to accommodate 20 tasks in
parallel, we predict the maximum work performed by a
single processor in a superstep to be CPU; = 669.86 s
for this example (an underestimation, the mean value
found in practice across n = 10 trials for this configura-
tion is 738.37 s of CPU time). Using S = 10 supersteps,
the total runtime predicted by our model for this experi-
ment is therefore 111.6 min. This results in a slight
underestimation of the true mean total cost by 11.4 min
(~10%) for this distributed configuration. This under-
estimation is probably explained by the slightly non-
Gaussian distribution observed in Figure 4. Results for

Table I. Parameter sets used for four different sets of
distributed application experiments varying the number of
distributed tasks (N;) and supersteps (S).

CPU Tasks per Supersteps
nodes (K) superstep (S)
Model prediction (eq. (5)) 20 20 10
Measured timing set | 20 20 10
Model prediction (eq. (5)) 20 20 30
Measured timing set 2 20 20 30
Model prediction (eq. (5)) 20 40 05
Measured timing set 3 20 40 05
Model prediction (eq. (5)) 20 100 05
Measured timing set 4 20 100 05

the predicted and measured job completion times for
the distributed configurations investigated in this way
are summarised in Tables 1 and 2. In Table 2 we present
measured and predicted overall computation time and
note that the difference between measured time and our
model prediction is always within 11% of the true
value. Our approximate model provides a simple yet
moderately accurate method for predicting the amount
of computational work required by applications formu-
lated under our task farming framework and distribu-
ted to SGE, or other queue based, cluster systems. For
completeness we contrast the computational time
required to mean wall-clock time used by the cluster in
practice. We note in general wall-clock time is signifi-
cantly larger than required computational time; how-
ever we find that wall-clock time is subject to high
variance between trials as we have little control over
multi-user cluster wall-clock time. This is due to the
queueing aspect of sharing the SGE cluster with other
users.

5 Example semi-synchronised task
farming applications

We introduce three computationally demanding com-
puter vision problems and propose solutions implemen-
ted wusing our semi-synchronised task farming
framework. We focus on simple farming applications
that are able to benefit from performing many tasks in
parallel yet require some form of communication
between rounds of parallel tasks (supersteps). As
described previously, these parallel task sets and syn-
chronisation steps make up a larger computational pro-
cess. The example applications that we study here all
share the following properties:

e Large input data set. Our input data sets are large
relative to the number of model parameters and
control options that dictate the data processing
procedures.

Table 2. Distributed application measured timing results and BSP model predictions for four sets of distributed tasks with rows
corresponding to Table |. We obtain the predicted overall computation time by taking the product of the predicted w; and the
number of supersteps (S). The difference between our overall computation time model predictions and measured results are always

within | 1% of the true value.

Truew, (s) Tasktime o Predicted w; Overall computation Wall-clock
(eq. (5)) and True w; (s) time (min) time (min)

Model prediction (eq. (5)) N/A N/A (462.0 + 207.86)=669.86 (669.86s-10)=111.6 N/A
Measured timing set | 462.0 107.13 738.37 123.06 173.46
Model prediction (eq. (5)) N/A N/A (348.17 + 168.02)=516.19 (516.19 s -30) = 258.1 N/A
Measured timing set 2 348.17 86.60 740.0 287.4 434.08
Model prediction (eq. (5)) N/A N/A (57.1 + 19.8)=76.9 (76.8 s -5) = 6.40 N/A
Measured timing set 3 57.1 8.95 91.3 6.89 41.3
Model prediction (eq. (5)) N/A N/A (214.4 + 96.46)=310.86 (310.86 s -5) =25.9 N/A
Measured timing set 4 214.4 37.83 353.6 27.3 133.0

12 The International Journal of High Performance Computing Applications

e Large number of tasks. The number of tasks N that
make up the overall computational process is large
and may not be known in advance. Each applica-
tion launches sets of tasks that are processed in par-
allel. All tasks in a synchronised superstep must
complete before the following round of tasks can
begin. Task parameters are defined by fixed model
parameters and potentially information resulting
from the completion of previous task sets.

e Task independence. Each task is defined by
model parameters, the global input data and poten-
tially the task set results from the previous super-
step. For tasks that are contained in the same
superstep, no dependencies exist between superstep
members.

5.1 Application |: Multi-view point cloud registration

5.1.1 Multiview registration. 3D surface registration can
be considered one of the crucial stages of reconstructing
3D object models using information obtained from
range images captured from differing object viewpoints.
Point correspondences between range images and view
order are typically unknown. Aligning pairs of these
depth images is a well-studied problem that has resulted
in fast and usually reliable algorithms. The generalised
problem of globally aligning multiple partial object sur-
faces is a more complex task that has received less
attention, yet remains a fundamental part of extracting
complete models from multiple 3D surface measure-
ments for many useful applications such as robot navi-
gation and object reconstruction. This is the multi-view
registration problem.

Early solutions to the multi-view registration prob-
lem typically proposed defining one view position as an
anchor point and then progressively aligning overlap-
ping range scans in a pairwise fashion such that apply-
ing the rigid transforms found at each pairwise step in
a chain brings each additional viewpoint into the coor-
dinate frame of the anchor scan, thus obtaining a com-
plete object model. Although straightforward and
fairly computationally inexpensive, this technique often
results in registration error accumulation and

propagation. In an attempt to address this issue, more
recent work (Pottmann et al., 2002; Toldo et al., 2010;
Torsello et al., 2011) proposes various techniques for
aligning all surface viewpoints simultaneously in an
attempt to reduce errors and make use of information
from all views concurrently. Performing view registra-
tion in this fashion is typically able to improve align-
ment quality by distributing registration errors evenly
between overlapping range views. Considering all views
simultaneously does however typically incur increased
computational cost as these approaches must, at each
iteration, compute the registration error between each
range view and some form of reference. A solution to
the multi-view registration problem, capable of han-
dling large data sets, consisting of many viewpoints,
therefore provides a good candidate for a parallelised
implementation.

In this paper we present our approach for the simul-
taneous global registration of depth sensor data from
many viewpoints, represented by multiple dense point
clouds (McDonagh and Fisher, 2013), implemented in
the Semi-synchronised task farming framework
described in Section 3. This framework allows us to
process large numbers of range images per object
reconstruction whilst retaining the accurate high qual-
ity view alignment results typical of simultaneous regis-
tration approaches.

5.1.2 Simultaneous registration using task farming. Given
many partial object views represented by point clouds
with a typical set of seed positions providing a coarse
alignment initialisation, we construct a kernel-based
density function of the point data to determine an esti-
mation of the sampled surface. Using this surface esti-
mate we define an energy function that implicitly
considers the position of all viewpoints simultaneously.
We use this estimation of the sampled surface to per-
form an energy minimisation in the scan pose trans-
form space, on each scan in parallel, to align each
viewpoint to the object surface estimate and implicitly,
to each other. After alignment, we recompute the
energy function and then re-minimise all scan positions.
This process is repeated to convergence. Figure 5

Compute kernel
density F(x)

over view set

Energy minimization
over transform
parameters (T%, Ox)
for each scan k

i

1

' . yes

: Converged? Done
1

1

1

1

Update
model
transforms

no

Figure 5. Our multi-view registration method. Stages of the algorithm within the dashed line area are distributed to our cluster in

parallel.

McDonagh et al.

13

outlines this approach, for details
(McDonagh and Fisher, 2013).

Since range viewpoints are aligned in parallel we are
able to accommodate many view sets without increas-
ing the wall-clock time, unlike typical serial solutions.
Utilising many object viewpoints affords benefits over
sparse sets of views for the task of object reconstruction
such as better object surface coverage, hole filling and
reconstructed object detail improvement.

For N view-points we define N independent parallel
tasks in each superstep and in each of these tasks we
use the current pose of the remaining N — 1 scans for
the purpose of computing a surface estimate and a
related energy function. We allow the final, active scan
to move in the transform space by searching for optimal
pose parameters. Each parallel task assigns a different
view-point as the active scan. Independently evaluating
the position of each moving scan in relation to the
inferred surface, and therefore minimising our energy
function brings the active view into better alignment.
After this minimisation has taken place for each view-
point in parallel, we have N sets of optimal rigid trans-
form parameters: three translation (6., 6,, 6.) and three
rotation (0., 0, 6,) parameters that bring each view
into alignment with the estimated surface (and therefore
the other views). Once each independent task has found
a set of rigid transform parameters (reached the super-
step synchronisation barrier), we apply the transform
parameters found for each view, thus bringing the entire
set into better alignment with one another, completing
our barrier synchronisation step. We then redistribute
the tasks to perform a re-estimation of the sampled sur-
face, using the new view-point positions, for each view
in parallel. This typically results in a tighter, more accu-
rate, estimation of the surface. We iterate this process
for S supersteps until viewpoint registration conver-
gence has been reached. Convergence can be identified
by looking at residual point alignment error or the mag-
nitude of the transforms being found by each task opti-
misation. In practice convergence is usually reached
within S = 10 supersteps; however, for the purposes of
the timing experiments in Section 4, we use up to
§ = 30 supersteps.

This optimisation algorithm can be summarised as
follows: we define {¥;} as the set of N individual point
sets V;, and S; as the collective surface estimate found
using the points in point sets V; where j = 1...N and
j # i. We define our energy function £(-) to evaluate
the alignment of 3D points x € V; in relation to surface
estimate S;. Therefore E(V;,S;) evaluates the current
pose of point set V; in relation to how well registered it
is with surface estimate S;. We perform minimisation in
the transform space of V;, evaluating how well the view-
point is aligned to our surface estimate S; at each itera-
tion step. This minimisation lets us find optimal pose

more N

parameters 6, for each V; in parallel. We use these para-
meters to apply pose transformations 7, to each point
set V;. This transform optimally aligns point set V; with
the related current surface estimate. In parallel we align
each point set V; to the surface estimate provided by S;.
By doing this we implicitly register each viewpoint with
all others. We then re-estimate S; from the resulting
new poses of {V;}, and iterate this process to conver-
gence. This algorithm is described using the following
pseudocode:
Input: Range scans Vi, ..., Vy
begin

converged := 0

while (NOT converged)

parallel fori =1...N
. N
S; = estimate_surface(Uj V)
J#i

0; = argmax E(Ty(V1), ;)
end 0
parallel fori=1...N
Vi=To,(Vi)
end
converged = test_convergence(Vy, ..., Vy)
end
end

5.1.3 Experimental setup. We evaluate this parallel align-
ment strategy quantitatively on synthetic and real range
sensor data where we find that we have competitive reg-
istration accuracy with existing frameworks for this
task. See McDonagh and Fisher (2013) for registration
accuracy results. Here we evaluate application speed-up
due to parallelisation. As discussed we are able to regis-
ter all views simultaneously by taking advantage of
many cluster nodes, and thus distribute the work. Here
we explore various distributed task and superstep con-
figurations and look at the performance gained by
making use of a distributed system compared to per-
forming the work on a single node. In the case of the
single CPU experiments we register each scan serially
using an individual cluster node and then find the
related surface estimates once rigid transforms have
been found for all scans. Figure 6 shows a partial exam-
ple midway through alignment.

We record runtime results as follows: for Single CPU
results no job queueing is involved as the algorithm per-
forms the registration of each scan in series until com-
pletion. The time reported is the total time required to
register N viewpoints in series over S supersteps. For
the parallel distributed experiments we measure the
time taken in two ways. As discussed in Section 3.1, the
distributed system we make use of employs a multi-user
job queueing system. Firstly, we measure the wall-clock
time by recording the total real-world time required

14 The International Journal of High Performance Computing Applications

Figure 6. Top: A planar slice of our energy function through coarsely aligned partial scans (Stanford bunny data set). Bottom: our
energy function approximating the underlying surface defined by the coarsely aligned range scans. A zoom of the slice region shows
surface function values that are represented by colours increasing from deep blue to red. We align each partial view point cloud with

this surface estimate in parallel.

Table 3. Multi-view registration algorithm timing results: single CPU vs distributed cluster.

Single CPU (min) Distributed ECDF Distributed ECDF Model prediction Sp
wall-clock time (min) ideal time (min) (min) (eq. (5))
5 views | superstep 37.26 10.77 8.74 8.37 4.26
20 views | superstep 95.38 10.89 7.74 8.28 12.32
5 views 5 supersteps 176.06 49.22 39.12 36.06 4.50
20 views 5 supersteps 835.02 185.94 52.40 49.37 15.94

from the point of submitting our work to the job queue
until the job is complete (when the registration of all
viewpoints V; has converged in this case). Here job
queueing (non-working) time cost may be incurred by
each individual distributed task, (the alignment of a sin-
gle view V; to the related surface estimate to find the
optimal pose transform 7p,). In Table 3 this timing
result is referred to as ‘ECDF wall-clock time’. The sec-
ond distributed timing measure excludes this queueing
(non-working) time and for each superstep finding the
maximum task length of an individual distributed task
(scan alignment) in a similar measurement process to
that outlined in Section 4. The time reported for this
second metric is then the sum of the maximum task

lengths over the total number of supersteps, we call this
the “distributed ideal time’. We consider this to be an
accurate assessment of the computation time required,
as each superstep must wait for all member distributed
tasks to finish before it may apply the global synchroni-
sation step and then launch the following set of distrib-
uted tasks. This second metric excludes real-world
queueing time. Furthermore, for this experiment, we
have sufficient worker nodes to process all distributed
tasks in a superstep concurrently (true in the case of our
current HPC cluster). These measurements allow us to
compare the optimal theoretical performance gain to
real-world speed-up, achieved in practice on our multi-
user system.

McDonagh et al.

15

5.1.4 Performance evaluation. The success of employing
an HPC system to solve computationally demanding
problems resulting from large real-world data sets
depends on the system architecture (e.g. number of
available processors) and algorithmic design. The per-
formance of an algorithm on an HPC system can be
evaluated by calculating the speed-up provided over a
single node or single CPU system. Here we use speed-
up S, and efficiency £, (equations (6) and (7)) to show
the improvement we achieve by formulating computer
vision problems under our task farming framework.
Assuming that the speed of processors and the network
is constant, then speed-up (Baker et al., 2006; Eager
et al., 1989) is often defined as:

T,
Sp = — (6)
p Tp

where p is the number of participating processors, 7 is
the computational time needed for sequential algorithm
execution and 7, is the execution time required by the
parallel algorithm when making use of p processors.
Ideal (linear) speed-up is obtained in the case S, = p.
Although super linear speed-up is possible in some
cases (e.g. due to cache effects in multi-core systems),
when using task farming and an HPC cluster we con-
sider linear speed-up as ideal scalability. In the linear
speed-up case, doubling the number of processors p will
double the speed-up S, (halving the required execution
time 7,). The second, related performance metric we
make use of is efficiency (equation (7)). The E, metric,
typically in range [0... 1] attempts to estimate how well
utilised p processors are when solving the problem at
hand compared to how much time is spent on activities
such as processor communication and synchronisation.

E,= 2= _— (7)

For our viewpoint registration algorithm, Table 3
shows that, in experiments performing only a single
superstep (surface estimation), when we compare the
serial and distributed computation times (excluding job
queueing time) we are able to achieve significant speed-
up in each case (where here p = 5,20 and 73, 75 and T

timings are in minutes) with S5 = 320 =426 and
Sy = 258 = 12.32. We note that the experiment align-

ing fewer viewpoints, using fewer nodes (|{V:}| =5,
p =15,8 = 1) achieves a result closer to optimal speed-
up (and efficiency). We reason that a longer maximum
task time (the superstep time) is likely to be observed
for the larger experiment (|{V;}| =20, p =20, S=1)
as it contains more distributed tasks per superstep. This
point holds in practice here and was explored during
our predictive model formulation and related scalability

experiments in Section 3.3. Table 3 also shows the same
task set sizes (|{V;}| = 5,20) but with multiple super-
steps (S = 5), which achieve slightly improved speed-up

and efficiency performance: S5 = L8 =450 and
Sy = 302 = 15.94. Again our hybrid model predic-

tions come within 10% of the measured values in each
case and we include ECDF wall-clock time results in
the distributed experiments for completeness. The time
required to align 20 range image viewpoints over five
supersteps using our simultaneous method can be effec-
tively reduced from ~14 h to 50 min.

5.2 Application 2: Feature selection

5.2.1 Feature selection for classification. The aim of feature
selection in computer vision and pattern recognition
problems is to obtain a small subset of a larger full set
of features which gives (e.g.) accurate classification.
The benefits of feature selection are to reduce the
dimensionality of data which decreases the classifica-
tion time and decreases the chance of over-fitting dur-
ing training. Besides, it is important to eliminate
irrelevant, redundant features and even the features
which might cause inaccurate classification. Popular
computer vision applications which utilise feature selec-
tion are face recognition (Yang et al., 2007), trajectory
analysis (Beyan and Fisher, 2013), image segmentation
(Roth and Lange, 2004), gesture recognition (Guo and
Dyer, 2003) and medical image processing (McDonagh
et al., 2008). In general, feature selection consists of
feature subset generation, feature subset evaluation, a
stopping criteria and validation of results using the
selected final subset (Liu, 2005; Wang et al., 2009).

Feature subset evaluation can be in terms of a criter-
ion such as maximising a performance criterion. The
iterations continue until the value of the performance
criterion is accepted which is often when adding addi-
tional features reduces performance. Feature subset
generation can be divided into two categories (Blum
and Langley, 1997); filters and wrappers. The filter
approaches do not use a learning algorithm and are
usually faster and computationally efficient. Filter
approaches rank the features and evaluate them in
terms of their benefit/relevance, such as using distance,
consistency, and mutual information between a feature
and the class labels (Huang et al., 2006). On the other
hand, wrapper methods use a learning algorithm to
evaluate the quality of the feature subset. Wrappers are
usually superior in accuracy when compared to filters
(Kohavi and John, 1997). In this study, we use the
Sequential Forward Feature Selection (SFFS) algo-
rithm (Section 5.2.2) which is a wrapper method with a
parallel schema that suits the semi-synchronised task
farming framework that we have introduced (see
Section 3 and Figure 1).

The

International Journal of High Performance Computing Applications

G E SIS ENEEEEEEEEER
.

Feature Subset
Evaluation

r Y

Original Feature Candidate:
Feature Set Subset Feature -
Generation subset -

Current Best
Subset

Validation of

Stopping Result Using
Criterion Selected
Subset

Figure 7. Steps of feature selection (adapted from (Wang et al., 2009)). The dashed box contains the stages where we evaluate the
candidate feature subsets independently and in parallel, using our task farming framework.

5.2.2 Sequential Forward Feature Selection. The forward
feature selection procedure begins with an empty fea-
ture subset. In the first iteration, it initialises the feature
subset by trying features one by one and evaluates the
subset in terms of the performance criterion. At the end
of the first iteration, the first best feature is selected. In
subsequent iterations, the subset of features that is
selected in the previous iteration is extended by one of
the remaining features. Hence, in the second iteration
the feature subsets have two features to be evaluated.
After all feature subsets are evaluated, the current best
result of the new subset is compared with the previous
iterations best result and, using the stopping criteria, a
decision is made to continue to a third iteration or to
stop selecting features in order to validate the results. If
the decision is to continue, then a similar procedure
iterates to produce three features in the candidate sub-
set for the third iteration, four features for the fourth
iteration and so on.

5.2.3 Sequential Forward Feature Selection using task
farming. Similar to many other wrapper approaches, the
SFFS procedure is computationally expensive; espe-
cially if the number of features is large, the learning
algorithm has a high time complexity and the required
number of iterations is large. Therefore, efficient imple-
mentations of this method are needed for many com-
puter vision applications. The procedure that we use to
accelerate SFFS is based on the semi-synchronised task
farming framework that we present above (see Figure 7:
the dashed box shows where we apply task farming). In
this context, in each superstep, we first build the subsets
and then distribute each subset as a parallel task to be
processed using the learning algorithm. After all the dis-
tributed tasks finish (the superstep conclusion), we col-
lect them to find the current best criterion value and the
feature corresponding to it. The new best feature is
selected and becomes a member of all following feature
subsets. During this task synchronisation stage, we also

apply the stopping criteria to decide if we are going to
continue to select features or not. If the decision is to
continue, the new feature subsets are built and the new
tasks are distributed. At the following iteration, the
number of distributed tasks is one less than the previous
iteration. This distribute-and-collate procedure contin-
ues until the value of the performance criterion
decreases compared to the previous iteration. When this
value decreases the decision to stop expanding the fea-
ture subset is made and the SFFS process is complete.
A formal description of our SFFS algorithm using
semi-synchronised task farming is as follows:

Input: N features {f;} = F, Evaluation function £
Output: The selected features S, S C F

begin
converged : = 0
s:= {}

while (NOT converged)
parallel for f; € F
evaluate e; = E(SU {f;})
end
select j = argmax (e;)

S=su{fy
F=F\{f}

converged = E(S) < E(S\{f;})
end
end

5.2.4 Experimental setup. The presented feature selection
procedure, formulated under our task farming frame-
work, was tested using a fish trajectory dataset which
has 3102 trajectories in total. In this dataset 3043 tra-
jectories are normal (show typical behaviour) while 59
of them are rare behaviours. There are in total 179 tra-
jectory description features which are obtained from
the curvature scale space (Bashir et al., 2006), moment

McDonagh et al. 17
Table 4. The results of applying distributed SFFS to a nine-fold real-world fish trajectory dataset. The table shows average
trajectory-class classification accuracies during training for the best performing feature subset of each length, for each fold. Shaded
values show the best criteria value found for each fold and the following criteria value (to the right of the best value) shows the
value found when an additional feature is added (producing a lower criterion value by definition, hence the algorithm terminates).
Feature subset cardinality | 2 3 4 5 6 7

(# supersteps)

Fold

| 0.9467 0.9482 0.9497 0.9305

2 0.9527 0.9689 0.9586

3 0.9305 0.9749 0.9734

4 0.8677 0.8841 0.9169 0.9481 0.9585 0.9588 0.9567
5 0.8649 0.9586 0.9481

6 0.9567 0.9675 0.9704 0.9734 0.9749 0.9689

7 0.9438 0.9689 0.9585

8 0.9201 0.9689 0.9808 0.9567

9 0.9645 0.9822 0.9438

descriptors (Suk and Flusser, 2004), velocity, accelera-
tion, angle, central distance functions (Bashir et al.,
2006) and vicinity (Liwicki and Bunke, 2006), and so
on, of trajectories. The aim is to select the feature sub-
set which can best distinguish normal and rare trajec-
tories with high class accuracy. The learning algorithm
that we utilise is based on affinity propagation and
class labels (see (Beyan and Fisher, 2013) for details).
The experiments were performed using nine-fold cross
validation which constructs the training and testing sets
randomly while maintaining an even distribution
of normal and abnormal trajectories between folds.
Table 4 displays the best feature subset performance
after a new feature is selected in each iteration. The per-
formance metric is the average trajectory class classifi-
cation accuracy. The total number of features that were
chosen for each fold were 3, 2, 2, 6, 2, 5, 2, 3 and 2
respectively, and feature selection stops when the
observed average classification accuracy is lower than
the previous superstep (iteration). The final (best) cri-
terion value for each fold are shown by shaded cells in
Table 4.

To evaluate the speed and efficiency of our distribu-
ted SFFS algorithm using our task farming framework
we compare it to sequential SFFS performed on a sin-
gle compute node and again make use of speed-up and
efficiency metrics (Section 5.1.4). We test both imple-
mentations by varying the total feature pool size
€{10, 20, 50, 100, 179} and cap the number of potential
new features added to the optimal feature subset by
limiting the number of superstep (feature selection)
rounds to 2, 6 and 10.

During each feature selection superstep, we employ
the learning algorithm: affinity propagation and class
labels (see Beyan and Fisher (2013) for details). The
results are presented in Table 5 in terms of processing
time (minutes). We compare the results obtained using
a single CPU (sequential SFFS) to the distributed SFFS

implementation again recording both the case including
SGE queueing (ECDF wall-clock time) and the case
where it is disregarded (Ideal ECDF time). Discounting
the SGE queueing time effectively assumes that we have
a sufficient number of cluster nodes available to process
all feature subset tasks in parallel.

5.2.5 Performance evaluation. The results in Table 5 show
that formulating this problem under our task farming
framework is again worthwhile, speeding up the com-
pletion times of our SFFS application significantly.
This is especially true in the cases where the cardinality
of the total feature pool (number of parallel tasks) is
large i.e where F = 50, 100, and 179. The single CPU
implementation is slower than distributed SFFS in
every case, even when taking into account the SGE
queueing time. The performance of our distributed
SFFS implementation achieves a speed-up of
S, € [2...30] (see Table 5) over the serial timings with
the assumption that sufficient compute nodes are avail-
able to process all distributed tasks in parallel. When
the SGE queueing time is included we achieve
S, € [2...13] (not shown). In practice this allows us to
evaluate a feature set containing (e.g.) 179 features to
find an optimal feature subset during training for the
purpose of fish trajectory classification in ~7 h (exclud-
ing queueing time) in comparison to the corresponding
serial computation that took 195 h (> 1 week) to com-
plete. Determining optimal feature subsets in this way
allows us to construct a fish trajectory classification
system capable of >95% accuracy on over 3000 trajec-
tories during the training stage.

5.3 Application 3: Hierarchical classification

5.3.1 Hierarchical classification method. The final applica-
tion that we implement under our task farming frame-
work is a hierarchical classification algorithm called the

18 The International Journal of High Performance Computing Applications

Table 5. Feature selection algorithm training time results (in minutes): single CPU vs distributed cluster. Our timing model
accurately predicts expected ideal distributed time and we again display large speed-up S, gains over the single CPU implementation.
The difference between predicted and measured time grows for the large feature set experiments (e.g. 100, 179) where we gain the
largest speed-up S,. One application specific cause for this discrepancy involves the particular image processing features extracted.
When experimenting with more features (100, 179) we include the extraction of computationally expensive image features that
result in long individual task times. These outliers do not significantly effect superstep mean task length w,, but do however increase
the ECDF ideal time by providing large w;. Re-examining our hybrid model with a non-Gaussian individual task time distribution may
help to improve these estimates. We again include wall-clock time for completeness.

Single CPU (min)

Distributed ECDF
wall-clock time (min)

Distributed ECDF
ideal time (min)

Model prediction Sp

(eq. (5)) (min)

10 features 2 superstep 162 31
10 features 6 supersteps 412 75
10 features 10 supersteps 322 153
20 features 2 superstep 323 35
20 features 6 supersteps 888 113

20 features 10 supersteps 951 211

50 features 2 superstep 1045 79
50 features 6 supersteps 1975 217
50 features 10 supersteps 3011 526
100 features 2 superstep 1749 132
100 features 6 supersteps 4023 417
100 features 10 supersteps 6493 957
179 features 2 superstep 2548 314
179 features 6 supersteps 6788 1027
179 features 10 supersteps 11712 2354

19 18.45 8.53
55 56.14 7.49
132 156.32 2.44
18 18.01 17.94
86 76.40 10.33
172 184.36 5.53
45 30.91 23.22
123 93.70 16.05
248 249.11 12.54
60 33.80 29.15
170 107.22 23.66
303 208.53 21.43
189 76.24 13.48
276 233.53 24.60
436 380.40 26.86

Balance-Guaranteed Optimised Tree (BGOT). The
BGOT is a classification method that has been shown
to perform well when handling data points originating
from imbalanced classes (Huang et al., 2012). We use
BGOT here for the task of object classification. Using
hierarchical classification, data to be classified is pushed
down a tree path according to a decision made at each
tree node (a classifier) (Cai and Hofmann, 2004; Duan
and Sathiya, 2005). This effectively narrows down the
classes that a sample is believed to belong to. Each tree
leaf node represents a single class and a data point
reaching a leaf is assigned to that class. During the
training phase, the BGOT method selects effective sub-
sets of predefined image features used at each node of
the tree with the goal of maximising the mean classifica-
tion accuracy among classes arriving at that node. This
increases the weight of minority and under represented
classes.

The BGOT algorithm applies two strategies to help
control classification error (Wang and Casasent, 2009):
(a) apply more accurate classifiers at a higher tree level
(earlier) and leave less certain decisions until deeper lev-
els and (b) keep the hierarchical tree balanced to mini-
mise the maximum tree depth. A hierarchical classifier
hnier 1s designed as a structured nodp set. Nodes are
defined as triples: Node, = {ID,, F,, C,, where ID, is a
unique node number, F, C {fis oo fm} 1s a feature
subset (chosen by a feature selection procedure (Weston
et al., 2000)) that is found to be effective for classifying
C, (a subset of classes). For the classification task we
use the m-class SVM classifier (Chang and Lin, 2011).

An example classification hierarchy with 15 classes is
shown in Figure 8. Each node, identiﬁed as 1D, illus-
trates the class separation decision C, made at that
node. The example BGOT is capable of classifying 15
classes by making use of seven classifier nodes and a
tree-depth of three levels. The first level splits the set of
classes into two groups.

5.3.2 Generating the hierarchical tree. The tree building
algorithm chooses the image feature subset that maxi-
mises the average classification accuracy for images
belonging to the aforementioned two groups. Each
class set is then split into two subsets and a new node
in the tree is created for each subset. This procedure
continues until all nodes contain at most four classes.
The automatically generated hierarchical tree (BGOT)
chooses the best class set split by exhaustively searching
all possible combinations of class splits that maintain a
balanced tree (an equal number of classes assigned to
each of two child nodes). As a result, there are two
parameter sets to search over when building the tree:
(a) all possible two-partitions of the classes at ecach
node, (b) the related optimal feature subset in terms of
classification performance. This dual parameter search
results in a computationally demanding process and
suggests that a parallel approach using our framework
would prove advantageous. Parallelising feature subset
selection is discussed previously (Section 5.2), so here
we focus on the tree construction technique, involving
the designation of image classes to tree nodes, that we
realise under our task farming framework.

McDonagh et al.

19

{ID1}
1[2|3]4]7[8]9]11 | 5|6]10]12[13[14[15

{ID2} {ID3}
11719111 | 2|3]4]8 5|10|15 | 6/12|13]|14
{ID5} {ID6}
c2|c3fcafcs] [5 |ciofcis
{ID4} {ID7}

c1]c7fcofcit c6|c12|c13|c14

Figure 8. A classification tree automatically generated by our
BGOT algorithm. The hierarchical classification strategy uses
seven node classifiers to classify |5 classes (Cy, ..., Cs).

5.3.3 Generating a Balance-Guaranteed Optimised Tree using
semi-synchronised task farming. In this section, we focus
on the part of BGOT generation involving the binary
split procedure that finds the best class subset split by
exhaustively searching all possible combinations of class
subsets. At each non-leaf tree node, the set of classes are
split into two groups and a SVM classifier (Cortes and
Vapnik, 1995) is trained to separate samples between
these two groups. Finding an optimal class split is expo-
nentially complex and sensitive to the number of classes.
In the example provided there are < 185) = 6435 possi-
ble combinations to divide the 15 classes (at the top
level) into two subsets of cardinality 7 and 8 which then

require an additional (i) = 70 and (Z) = 35 com-

binations to split the tree at the following level. On aver-
age the classifier quality of a subset split takes over two
minutes to evaluate therefore >250 CPU-hours are
required if we wish to run the entire exhaustive evalua-
tion process on a single compute node. This process is
therefore a good candidate to make use of our parallel
framework.

More formally, our tree generation algorithm can be
described as follows:

Input: class C; to C,
begin
C = {Cl, ..
level == 0

featureSet := FeatureSelection(c)

NN

construct(c, level)

end
proc construct(c,n) =
if n>MAXDEPTH
exit
end

comment: Evaluate classification accuracy on each
split of classes ¢ in parallel
parallel for{binary splits of ¢}
r = evaluate(c, featureSet)
end
comment: The ChooseSplit function finds the optimal
class subset pair based on the set of » evaluations
[cLeft, cRight] := ChooseSplit({r})
comment: The maximum leaf node subset size is set
to 4 to limit max tree depth
if size(|cLeft|) > 4
construct(cLeft,n + 1)
end
if size(|cRight|) > 4
construct(cRight,n + 1)
end
end
A schematic of the program flow is illustrated in
Figure 9. Firstly the algorithm splits the current set of
classes ¢ into all combinations of pairs of disjoint sub-
sets with size @ and then sends each combination to the
performance evaluation stage. After evaluating all of
the possible splits, the best subset pair, in terms of clas-
sification accuracy, is chosen and this split is used to
construct two new child tree nodes. This procedure is
iterated for both child branches until the stopping cri-
terion is satisfied. Each subset classification accuracy
performance evaluation at a given tree level is indepen-
dent of every other split, and the evaluation tasks do
not need to communicate. Furthermore, all tasks have
the same work-flow yet have varying input: the subset
class member combination. As a result, we find this
process a good candidate for our semi-synchronized
task farming framework and our HPC cluster. We
assign each combination of class set split to a distribu-
ted parallel task. Each pair of subsets is then evaluated
with an accuracy score in parallel (the accuracy score
for each distributed task is found by taking the mean
classification accuracy of the two subsets assigned to
the task). After all distributed tasks in a superstep have
concluded, we collect all of the mean accuracy scores
and select the class split with the highest score (our
superstep conclusion). Given True Positive and False
Negative classifications, the mean accuracy (recall rate)
per distributed task is defined as:

1 |e]

(True Positive;)
|c|j — "True Positive; + False Negative;

AR =

(®)
where |c| is the number of image classes.

5.3.4 Experimental setup. We perform species classifica-
tion experiments using 6875 fish images with a five-fold
cross validation procedure. The training and testing
sets are isolated such that fish images from the same
trajectory sequence (containing the same fish) are not

20

The International Journal of High Performance Computing Applications

Distributed
task

Distributed
I task

1
1
1

Stop criterion

Figure 9. The algorithm to generate our BGOT. At each tree level, we select the optimal disjoint and balanced class subset split by
exhaustively searching all possible splitting combinations. Each set of algorithm stages within a dashed area represents a superstep

that is distributed to our cluster in parallel.

used during both training and testing. We extract 66
different image features for the classification task.
These features are a combination of colour, shape and
texture properties in varying local spatial areas of the
fish images such as the tail/head/upper/lower body
area, as well as collecting features from the entire fish
body area. SFFS is applied to find an optimal feature
subset to provide input for the classification task. We
use an SVM variant for the classification task. Since
SVMs were originally developed for the binary classifi-
cation problem, we introduce a one-vs-one strategy
with a voting mechanism to convert the binary SVM
into a multi-class classifier (Chang and Lin, 2011). The
mechanism is based on a classify-and-vote procedure.
Specifically, each class is trained in a set of binary clas-
sifiers against each other class individually. The opti-
mal BGOT result found is shown in Figure 8, where 15
classes are classified using a tree of depth three. See
Huang et al. (2012) for further species classification
details.

5.3.5 Performance evaluation. We explore the computa-
tional time requirements for executing our BGOT algo-
rithm in a similar fashion to the previous applications
deployed under our task farming framework. The most

expensive superstep for this application is (by far) the
initial superstep, involving the evaluation of (185> =

6435 possible pairs of image class subset splits. This ini-
tial step is therefore the section of the application that
we focus our timing evaluation on during this experi-
ment. As each subset split takes on average ~2 min of
computational time to evaluate we choose to perform
the evaluation of a number of subset combinations in
each distributed task. Explicitly we evaluate the time
and efficiency performance using experiments involving
the distribution of 1, 25, 50 and 100 tasks in parallel for
this large initial superstep. Using 15 image classes, this
results in assigning 433, 6335, 635 and $85 subset evalua-
tions to each distributed parallel task during each
experiment respectively. We focus here on timing results
from the initial large superstep and therefore find that
queueing (non-working) time will be minimal and there-
fore display ECDF ideal time and not wall-clock time
in Table 6. We show the ECDF ideal time metric
(defined in Section 5.1.3) in Table 6 and note that we
are again able to significantly decrease the required pro-
cessing time in relation to the single computational
node case by increasing the number of p processors
invoked. By increasing the number of tasks distributed

McDonagh et al.

21

Table 6. We generate BGOTs whilst varying the number of potential graph node subset evaluations per distributed task (node). We
are able to improve speed-up by increasing the number of participating processors p at the cost of efficiency. The difference between
our model predictions and measured computational time costs are within ~10% of the true value.

CPUs (K) Distributed ECDF Model prediction Sp E,
ideal time (hours) (eq. (5)) (hours)
6435 subset evaluations per node I 260.42 N/A 1.00 1.00
257 subset evaluations per node 25 18.70 20.89 14.71 0.59
128 subset evaluations per node 50 9.33 10.23 27.91 0.56
64 subset evaluations per node 100 5.6l 5.64 46.42 0.46

in parallel in the superstep (and therefore reducing the
number of subset evaluations assigned to each task), we
reduce the ECDF ideal time (and therefore increase our
speed-up metric) in a near linear fashion achieving
speed-up metrics of S,s = 14.7130, S50 = 27.9121 and
S100 = 46.4207 in practice. While increasing the number
of parallel tasks reduces both the ECDF ideal time (and
wall-clock time) metrics in the case of the experiments
performed here, we expect to find a limit to the effi-
ciency of doing this in practice. We see from Table 6
that our efficiency metric (defined in Section 5.1.3)
begins to drop as we increase the number of parallel
tasks (and therefore processors invoked p). For exam-
ple, using our current multi-user SGE cluster, it is
doubtful that assigning only a single two minute SVM
evaluation to each distributed task would provide fur-
ther improvement as, given that we do not have access
to 6435 processors in parallel, queueing time in practice
would likely begin to counteract the linear speed-up
improvement we observe in the experiments performed
here. We leave finding the optimal trade-off between
speed-up and efficiency (i.e. the optimal number of
image class subset evaluations to assign per distributed
task) to future work.

By applying our task farming framework to this
problem we are able to effectively evaluate > 6500
BGOT graphs and find the graph configuration that is
able to classify 15 species of fish with the highest accu-
racy. Using our task farming approach reduces the time
needed in practice for this evaluation from >260 h
(using a single compute node) to under 6 h when mak-
ing use of an SGE cluster (p = 100). By distributing this
process with our task farming framework we have been
able to easily experiment with and extend our species
classification system (e.g. to include further fish species)
even although this involves BGOT re-evaluation that
would prove extremely time-consuming if only a serial
implementation were available.

6 Discussion

In this paper, we formulate a semi-synchronised task
farming framework for solving computationally inten-
sive problems where independent problem components

can be distributed across an HPC cluster. Results are
collated to inform following rounds of task distribu-
tion, eventually leading to a global problem solution.
Our contributions include the development of a model
to predict overall application completion time for prob-
lems that are formulated using our framework. We
validate this model using simulation and experimental
results and find it to be sufficiently accurate, providing
a simple tool that can be utilised when planning the
time requirements of computationally expensive appli-
cations. Further to this we study the performance
enhancement obtained by utilising our framework in
practice to guide the algorithmic design of several com-
putationally expensive computer vision problems and
compare the throughput using our framework with that
of solutions making use of only a single compute node.
In each example provided we find near linear speed-up
improvements in the number of participating proces-
sors p over the related serial implementations. Also, in
the case of each real-world problem investigated, we
are able to provide model predictions for computation
time that are typically within ~10% of the execution
time required in practice.

Based on our experimental results we show that pro-
cessing large data sets using algorithms formulated
with our framework, and deployed on an HPC cluster,
obtain significant time saving over single node compu-
tation due to vast gains in terms of speed-up. We note
that in practice the human effort required to move
from an original serial algorithm implementation to a
distributed task farming application is very reasonable.
By making use of SGE to handle the task queueing sys-
tem and allowing developers to concentrate on domain
specific problem aspects, we are typically able to com-
pletely convert a serial code on the order of days. By
also employing user-friendly languages for parallel pro-
gramming, master—slave communication is also hidden
from the developer allowing them to again focus solely
on domain specific problems.

Distributed computing on HPC clusters offers an
attractive option for our framework when compared to
expensive integrated mainframe solutions. The main
advantages of HPC clustering include distributed
robustness and the ease of cluster scalability. When

22 The International Journal of High Performance Computing Applications

using an HPC cluster to accelerate the rate that we are
able to solve computationally expensive problems the
factors of data set size and algorithm design play
important roles in determining the degree of success in
parallelising an application. Our framework allows the
performance of a distributed program on a given archi-
tecture to be predictable. Using our framework and
simple timing parameters from the algorithm under
evaluation allow us to reason about program design at
an early stage.

All implementation examples presented in this work
make use of MATLAB and we find that the prerequi-
sites for writing parallel code under the DCT from
MathWorks are relatively low. There is no need for the
developer to instruct cluster machines how to commu-
nicate, which part of the code to execute and how to
assemble end results. We find that this provides a
straightforward and intuitive approach to parallelising
computationally demanding applications in a reason-
able time frame. Parallelisation under this simple task
farming framework results in potentially huge time sav-
ings without requiring extensive task or data parallelism
knowledge. Possible extentions and interesting avenues
of future work include implementing solutions using
our framework with faster compile languages (e.g.
C/C++) and applying such solutions to time critical
applications. Additionally, extending our performance
modelling treatment, to account for heterogeneous pro-
cessors, would likely improve the model predictive
power. Related extensions might take the form of re-
examining individual task time fitting using more
sophisticated distributions to improve modelling in the
heterogeneous processor case (e.g. employing distribu-
tion mixtures). Finally during the experimental work
performed here it was noted that in practice there is
often contention between speed-up and efficiency. In
future we aim to find optimal-trade-off generalisations
from the specific cases presented here. In summary this
work highlights a range of demanding vision applica-
tions that a straightforward parallelisation strategy
such as ours can contribute to solving, whilst offering
vast computational time savings.

Acknowledgements

We thank Murray Cole and Bastiaan Boom for helpful dis-
cussion. We also thank the anonymous reviewers for their
valuable comments and suggestions to improve the quality of
the paper.

Funding

This work was supported by the Fish4Knowledge project,
which is funded by the European Union 7th Framework
Programme (grant number FP7/2007-2013) and by the
EPSRC (grant number EP/P504902/1).

References

Abdelzaher T, Thaker G and Lardieri P (2004) A feasible
region for meeting aperiodic end-to-end deadlines in
resource pipelines. In: Proceedings of the 24th international
conference on distributed computing systems (ICDCS’04),
Tokyo, 23-26 March 2004, pp.436-445. Washington DC:
IEEE Computer Society. Available at: http://dl.acm.org/
citation.cfm?d =977400.977975.

Adve V, Bagrodia R, Browne J, et al. (2000) POEMS: End-to-
end performance design of large parallel adaptive compu-
tational systems. Software Engineering 26(11): 1027-1048.

Baker M, Carpenter B and Shafi A (2006) MPJ express:
Towards thread safe Java HPC. In: IEEE international
conference on cluster computing (Cluster 2006), Barcelona,
Spain, 25-28 September 2006, pp.25-28.

Bashir F, Khokhar A and Schonfeld D (2006) View-invariant
motion trajectory based activity classification and recogni-
tion. Multimedia Systems 12(1): 45-54.

Beyan C and Fisher R (2013) Detecting abnormal fish trajec-
tories using clustered and labelled data. Proceedings of the
IEEE international conference on image processing.

Blum A and Langley P (1997) Selection of relevant features
and examples in machine learning. Artificial Intelligence
97(1-2): 245-271.

Buyya R, Murshed M and Abramson D (2002) A deadline
and budget constrained cost—time optimisation algorithm for
scheduling task farming applications on global grids. Tech-
nical report, Monash University. Available at: Available
at: http://http://arxiv.org/pdf/cs/0203020.pdf.

Cai L and Hofmann T (2004) Hierarchical document categor-
ization with support vector machines. Proceedings of the
13th ACM international conference on information and
knowledge management, pp.78-87.

Casanova H, Kim M, Plank J, et al. (1999) Adaptive schedul-
ing for task farming with grid middleware. International
Journal of High Performance Computing 13(3): 231-240.

Casanova H, Obertelli G, Berman F, et al. (2000) The
AppLeS parameter sweep template: User-level middleware
for the grid. In: Proceedings of the 2000 ACM/|IEEE con-
ference on supercomputing (Supercomputing ‘00), Rhode
Island, NY, 4-10 November 2000, p.60. Washington, DC,
USA: IEEE Computer Society. Available at: http://dl.acm.
org/citation.cfm?id = 370049.370499 .

Chang C and Lin C (2011) LIBSVM: A Library for support
vector machines. ACM Transactions on Intelligent Systems
and Technology 2(3): 1-27.

Cole M (1991) Algorithmic Skeletons: Structured Management
of Parallel Computation. Cambridge, MA: MIT Press.

Cortes C and Vapnik V (1995) Support-vector networks.
Machine Learning 20(3): 273-297.

Dean J and Ghemawat S (2008) MapReduce: Simplified data
processing on large clusters. Communications of the ACM
S51(1): 107-113. doi: 10.1145/1327452.1327492.

Duan K and Sathiya K (2005) Which is the best multiclass
SVM method? An empirical study. In: Proceedings of the
6th international conference on multiple classifier systems
(MCS05), pp.278-285.

Eager D, Zahorjan J and Lazowska E (1989) Speedup versus
efficiency in parallel systems. IEEE Transactions on Com-
puters 38(3): 408-423. doi: 10.1109/12.21127.

McDonagh et al.

23

Elwasif W, Plank J and Wolski R (2001) Data staging effects

in wide area task farming applications. In: Proceedings of

IEEE international symposium on cluster computing and the
grid, Brisbane, Australia.

Foster 1 (1994) Task parallelism and high-performance lan-
guages. I[EEE Parallel Distribution Technology 2(3): 27-36.
doi: 10.1109/M-PDT.1994.329794 .

Frank M, Agarwal A and Vernon M (1997) LoPC: modeling
contention in parallel algorithms. In: Proceedings of the 6th
ACM SIGPLAN symposium on the principles and practice
of parallel programming (PPOPP 97), pp.276-287. New
York, NY: ACM.

Gentzsch W (2001) Sun Grid Engine: Towards creating a
compute power grid. In: Proceedings of the 1st international
symposium on cluster computing and the grid (CCGRID
‘01), pp-35-43. Washington, DC: IEEE Computer Society.

Guo G and Dyer C (2003) Simultaneous feature selection and
classifier training via linear programming: A case study
for face expression recognition. Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp.346-352.

Hammond S, Mudalige G, Smith J, et al. (2010) WARPP: A
toolkit for simulating high-performance parallel scientific
codes. In: Proceedings of the 2nd international ICST con-
ference on simulation tools and techniques. ACM. doi:
10.4108/ICST.SIMUTOOLS2009.5753.

Hammond S, Smith J, Mudalige G, et al. (2009) Predictive
simulation of HPC applications. In: The IEEE 23rd inter-
national conference on advanced information networking and
applications (AINA-09), .

Hillis W, Steele J and Guy L (1986) Data parallel algorithms.
Communications of the ACM 29(12): 1170-1183. doi:
10.1145/7902.7903 .

Huang J, Cai Y and Xu X (2006) A filter approach to feature
selection based on mutual information. Proceedings of the
IEEE international conference on cognitive informatics,
pp-84-89.

Huang P, Boom B, He J, et al. (2012) Underwater live fish
recognition using balance-guaranteed optimized tree. In:
Proceedings of the 11th Asian conference on computer vision
(ACCV 2012), Vol. 7724, pp.422-433.

Isard M, Budiuand M, Yu Y, et al. (2007) Dryad: Distributed
data-parallel programs from sequential building blocks.
In: Proceedings of the 2nd ACM SIGOPS|/EuroSys
European conference on computer systems 2007 (EuroSys
07), pp.59-72. New York: ACM. doi: 10.1145/
1272996.1273005 .

Kerbyson D, Hoisie A and Wasserman H (2005) Use of pre-
dictive performance modeling during large-scale system
installation. Parallel Processing Letters 15(04): 387-395.
doi: 10.1142/S0129626405002301.

Kohavi R and John G (1997) Wrappers for feature subset
selection. Artificial Intelligence 97(1-2): 273-324.

Labarta J, Girona S and Cortes T (1997) Analysing schedul-
ing policies using DIMEMAS. Parallel Computing 23(1).
Liu H Sr (2005) Toward integrating feature selection algo-
rithms for classification and clustering. /EEE Transactions

on Knowledge and Data Engineering 17(4): 491-502.

Liwicki M and Bunke H (2006) HMM-based on-line recogni-

tion of handwritten whiteboard notes. Proceedings of the

10th international workshop on frontiers in handwriting rec-
ognition, pp.595-599.

McColl W (1993) General purpose parallel computing. Gib-
bons AM and Spirakis P (eds) Lectures on Parallel Compu-
tation (Cambridge International Series on Parallel
Computation). Cambridge; New York: Cambridge Uni-
versity Press: 337-391.

McDonagh S and Fisher R (2013) Simultaneous registration
of multi-view range images with adaptive kernel density
estimation. Under review : x—X.

McDonagh S, Fisher R and Rees J (2008) Using 3D informa-
tion for classification of non-melanoma skin lesions. In:
Proceedings of Medical Image Understanding and Analysis,
Dundee, pp.164-168.

Mudalige G, Vernon M and Jarvis S (2008) A plug-and-play
model for evaluating wavefront computations on parallel
architectures. In: Proceedings of the IEEE International
Symposium on Parallel and Distributed Processing (IPDPS
2008), pp.1-14. doi: 10.1109/TPDPS.2008.4536243.

Nudd G, Kerbyson D, Papaefstathiou E, et al. (2000) PACE:
A toolset for the performance prediction of parallel and
distributed systems. International Journal High Perfor-
mance Computing Applications 14(3): 228-251.

Pllana S and Fahringer T (2005) Performance prophet: A per-
formance modeling and prediction tool for parallel and
distributed programs. In: Proceedings of the 2005 interna-
tional conference on parallel processing (ICPP-05), Oslo,
26(11): 509-516.

Poldner M and Kuchen H (2008) On implementing the farm
skeleton. Parallel Processing Letters117—131.

Pottmann H, Leopoldseder S and Hofer M (2002) Simulta-
neous registration of multiple views of a 3D object.
Archives of the Photogrammetry, Remote Sensing and Spa-
tial Information Sciences: 265-270.

Revenga P, Sérot J, Lazaro J, et al. (2003) A Beowulf-class
architecture proposal for real-time embedded vision. In:
Proceedings of the 17th International Symposium on Paral-
lel and Distributed Processing (IPDPS ‘03), pp.8—16.
Washington, DC: IEEE Computer Society. Available at:
http://dl.acm.org/citation.cfm?id = 838237.838308.

Roth V and Lange T (2004) Adaptive feature selection in
image segmentation. Pattern Recognition (3175): 9-17.

Silva L, Veer B and Silva J (1993) How to get a fault-tolerant
farm. In: Proceedings of the world transputer congress,
Aachen, Germany, pp.923-938.

Skillicorn D, Hill J and McColl W (1997) Questions and
Answers about BSP. Scientific Programming 6: 249-274.
Spooner D, Jarvis S, Cao J, et al. (2003) Local grid scheduling
techniques using performance prediction. /EEE Proceed-

ings — Computers and Digital Techniques 150: 87-96(9).

Suk T and Flusser J (2004) Graph method for generating
affine moment invariants. Proceedings of the international
conference on pattern recognition, pp.192—195.

Thain D, Tannenbaum T and Livny M (2005) Distributed
computing in practice: The Condor experience. Concur-
rency and Computation: Practice and Experience 17(2—4):
323-356. doi: 10.1002/cpe.938.

Toldo R, Beinat A and Crosilla F (2010) Global registration
of multiple point clouds embedding the generalized pro-
crustes analysis into an ICP framework. In: Proceedings of

24 The International Journal of High Performance Computing Applications

the conference on 3D proceedings, visualization and
transmission,

Torsello A, Rodola E and Albarelli A (2011) Multi-view reg-
istration via graph diffusion of dual quaternions. In: IEEE
conference on computer vision and pattern recognition,
pp.2441-2448.

Valiant G (1990) A bridging model for parallel computation.
Communications of the ACM 33(8): 103-111. doi:
10.1145/79173.79181.

Wang Q, Li B and Hu J (2009) Feature selection for human
resource selection based on affinity propagation and SVM
sensitivity analysis. In: Proceedings of the world congress
on nature and biologically inspired computing (NaBIC 09),
pp-31-36. doi: 10.1109/NABIC.2009.5393596.

Wang Y and Casasent D (2009) A support vector hierarchical
method for multi-class classification and rejection. In: Pro-
ceedings of the international joint conference on neural net-
works (IJCNN), pp.3281-3288.

Weston J, Mukherjee S, Chapelle O, et al. (2000) Feature
selection for SVMs. Advances in Neural Information Pro-
cessing Systems 13: 668—674. Available at: http://citeseer.
ist.psu.edu/viewdoc/summary?doi=10.1.1.102.7476.

Yang A, Wright J, Ma Y, et al. (2007) Feature selection in
face recognition: A sparse representation perspective. UC
Berkeley Tech Report UCB/EECS-2007-99.

Author biographies

Steven McDonagh received the BSc degree in
Computer Science and Artificial Intelligence from The
University of Edinburgh in 2008. He is currently a
PhD candidate in the School of Informatics, University
of Edinburgh. His interests span a variety of topics in
computer vision, image processing and machine learn-
ing. His current work focuses on the analysis and
implementation of multi-view registration algorithms,
range data processing and geometric modelling.

Cigdem Beyan received her BEng degree in Computer
Engineering from Baskent University, Turkey, in 2008,
and her MSc degree in Informatics from the Middle
East Technical University, Turkey, in 2010. She is now
a PhD candidate in the School of Informatics, Institute
of Perception, Action and Behaviour at The University

of Edinburgh, UK. She received the Edinburgh Global
Overseas Research Scholarship and Principal Career
Development Scholarship in career area teaching. She
worked on fish trajectory analysis for the
Fish4Knowledge project. Her primary research inter-
ests are computer vision and machine learning, beha-
viour understanding, trajectory analysis, anomaly
detection, classification of imbalanced data and active
learning.

Phoenix X Huang received his BEng degree in
Electronic Engineering in 2006 and his MEng degree in
Signal and Information Engineering in 2009 from The
University of Science and Technology of China. He is
currently working toward the PhD degree in the
School of Informatics at the University of Edinburgh.
His research interests include object recognition, com-
puter vision and image processing.

Robert B Fisher FIAPR, FBMVA has received a BS
(Mathematics, California Institute of Technology,
1974), MS (Computer Science, Stanford, 1978) and a
PhD (Edinburgh, 1987). Since then, Bob has been an
academic at Edinburgh University. His research covers
topics in high level and 3D computer vision, focussing
on reconstructing geometric models from existing
examples, which contributed to a spin-off company,
Dimensional Imaging. More recently, he has also been
researching video sequence understanding, in particular
attempting to understand observed animal behaviour.
The research has led to 13 authored or edited books
and about 250 peer-reviewed scientific articles. He has
developed several on-line computer vision resources,
with over 1 million hits. Most recently, he has been the
coordinator of an EC STREP project acquiring and
analysing video data of 1.4 billion fish from over about
20 camera-years of undersea video of tropical coral
reefs. He is a Fellow of the International Association
for Pattern Recognition (2008) and the British
Machine Vision Association (2010).

