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Abstract

Contemporary approaches frame the color constancy

problem as learning camera specific illuminant mappings.

While high accuracy can be achieved on camera specific

data, these models depend on camera spectral sensitiv-

ity and typically exhibit poor generalisation to new de-

vices. Additionally, regression methods produce point es-

timates that do not explicitly account for potential ambigu-

ities among plausible illuminant solutions, due to the ill-

posed nature of the problem. We propose a Bayesian frame-

work that naturally handles color constancy ambiguity via

a multi-hypothesis strategy. Firstly, we select a set of can-

didate scene illuminants in a data-driven fashion and apply

them to a target image to generate a set of corrected images.

Secondly, we estimate, for each corrected image, the likeli-

hood of the light source being achromatic using a camera-

agnostic CNN. Finally, our method explicitly learns a final

illumination estimate from the generated posterior proba-

bility distribution. Our likelihood estimator learns to an-

swer a camera-agnostic question and thus enables effective

multi-camera training by disentangling illuminant estima-

tion from the supervised learning task. We extensively eval-

uate our proposed approach and additionally set a bench-

mark for novel sensor generalisation without re-training.

Our method provides state-of-the-art accuracy on multiple

public datasets (up to 11% median angular error improve-

ment) while maintaining real-time execution.

1. Introduction

Color constancy is an essential part of digital image pro-

cessing pipelines. When treated as a computational process,

this involves estimation of scene light source color, present

at capture time, and correcting an image such that its ap-

pearance matches that of the scene captured under an achro-

matic light source. The algorithmic process of recovering

the illuminant of a scene is commonly known as computa-

Figure 1. Our multi-hypothesis strategy allows us to leverage

multi-camera datasets. Example image taken from the NUS

dataset [14]. Single camera training: (a) state of the art method

FFCC [7] and (b) our method obtains similar angular-error. Train-

ing with all 8 dataset cameras: aggregate all images to (c) define

FFCC histogram center and (d) use an illuminant candidate set per

camera. [ r
g

, b
g

] color space plots show training set illuminant dis-

tributions. Each camera is encoded with a different color in (d)

to highlight camera-specific illuminants. Our model leverages the

extra data to achieve lower angular error. Images are rendered in

sRGB color space.

tional Color Constancy (CC) or Automatic White Balance

(AWB). Accurate estimation is essential for visual aesthet-

ics [24], as well as downstream high-level computer vision

tasks [2, 4, 13, 17] that typically require color-unbiased and

device-independent images.

Under the prevalent assumption that the scene is illumi-

nated by a single or dominant light source, the observed

pixels of an image are typically modelled using the physi-

cal model of Lambertian image formation captured under a

trichromatic photosensor:

2270



ρk(X) =

∫
Ω

E(λ)S(λ,X)Ck(λ)dλ k ∈ {R,G,B}.

(1)

where ρk(X) is the intensity of color channel k at pixel

location X , λ the wavelength of light such that E(λ) rep-

resents the spectrum of the illuminant, S(λ,X) the surface

reflectance at pixel location X and Ck(λ) camera sensitiv-

ity function for channel k, considered over the spectrum of

wavelengths Ω.

The goal of computational CC then becomes estimation

of the global illumination color ρEk where:

ρEk =

∫
Ω

E(λ)Ck(λ)dλ k ∈ {R,G,B}. (2)

Finding ρEk in Eq. (2) results in a ill-posed problem due to

the existence of infinitely many combinations of illuminant

and surface reflectance that result in identical observations

at each pixel X .

A natural and popular solution for learning-based color

constancy is to frame the problem as a regression task

[1, 28, 25, 10, 48, 34, 9]. However, typical regression meth-

ods provide a point estimate and do not offer any informa-

tion regarding possible alternative solutions. Solution am-

biguity is present in many vision domains [45, 36] and is

particularly problematic in the cases where multi-modal so-

lutions exist [35]. Specifically for color constancy we note

that, due to the ill-posed nature of the problem, multiple

illuminant solutions are often possible with varying prob-

ability. Data-driven approaches that learn to directly esti-

mate the illuminant result in learning tasks that are inher-

ently camera-specific due to the camera sensitivity function

c.f . Eq. (2). This observation will often manifest as a sen-

sor domain gap; models trained on a single device typically

exhibit poor generalisation to novel cameras.

In this work, we propose to address the ambiguous na-

ture of the color constancy problem through multiple hy-

pothesis estimation. Using a Bayesian formulation, we

discretise the illuminant space and estimate the likelihood

that each considered illuminant accurately corrects the ob-

served image. We evaluate how plausible an image is af-

ter illuminant correction, and gather a discrete set of plau-

sible solutions in the illuminant space. This strategy can

be interpreted as framing color constancy as a classifica-

tion problem, similar to recent promising work in this direc-

tion [6, 7, 38]. Discretisation strategies have also been suc-

cessfully employed in other computer vision domains, such

as 3D pose estimation [35] and object detection [42, 43],

resulting in e.g. state of the art accuracy improvement.

In more detail, we propose to decompose the AWB task

into three sub-problems: a) selection of a set of candidate

illuminants b) learning to estimate the likelihood that an im-

age, corrected by a candidate, is illuminated achromatically,

and c) combining candidate illuminants, using the estimated

posterior probability distribution, to produce a final output.

We correct an image with all candidates independently

and evaluate the likelihood of each solution with a shallow

CNN. Our network learns to estimate the likelihood of white

balance correctness for a given image. In contrast to prior

work, we disentangle camera-specific illuminant estimation

from the learning task thus allowing to train a single, device

agnostic, AWB model that can effectively leverage multi-

device data. We avoid distribution shift and resulting do-

main gap problems [1, 41, 22], associated with camera spe-

cific training, and propose a well-founded strategy to lever-

age multiple data. Principled combination of datasets is of

high value for learning based color constancy given the typi-

cally small nature of individual color constancy datasets (on

the order of only hundreds of images). See Figure 1.

Our contributions can be summarised as:

1. We decompose the AWB problem into a novel multi-

hypothesis three stage pipeline.

2. We introduce a multi-camera learning strategy that

allows to leverage multi-device datasets and improve

accuracy over single-camera training.

3. We provide a training-free model adaptation strategy

for new cameras.

4. We report improved state-of-the-art performance on

two popular public datasets (NUS [14], Cube+ [5]) and

competitive results on Gehler-Shi [47, 23].

2. Related work

Classical color constancy methods utilise low-level

statistics to realise various instances of the gray-world as-

sumption: the average reflectance in a scene under a neu-

tral light source is achromatic. Gray-World [12] and its

extensions [18, 50] are based on these assumptions that tie

scene reflectance statistics (e.g. mean, max reflectance) to

the achromaticity of scene color.

Related assumptions define perfect reflectance [32, 20]

and result in White-Patch methods. Statistical methods

are fast and typically contain few free parameters, however

their performance is highly dependent on strong scene con-

tent assumptions and these methods falter in cases where

these assumptions fail to hold.

An early Bayesian framework [19] used Bayes’ rule to

compute the posterior distribution for the illuminants and

scene surfaces. They model the prior of the illuminant

and the surface reflectance as a truncated multivariate nor-

mal distribution on the weights of a linear model. Other

Bayesian works [44, 23], discretise the illuminant space and
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Figure 2. Method overview: we first generate a list of n candidate illuminants ℓi (candidate illuminants are shown left of the respective

corrected images) using K-means clustering [33]. We correct the input image with each of the n candidates independently and then

estimate the likelihood oi of each corrected image with our network. We combine illuminant candidates using the posterior probability

distribution to generate an illuminant estimation ℓ
∗. The error is back-propagated through the network using angular error loss L. The [ r

g
,

b
g

] plot in the upper-right illustrates the posterior probability distribution (triangles encoded from blue to red) of the candidates ℓi, the final

prediction vector ℓ∗ (blue circle) and the ground-truth illuminant ℓGT (green circle). Images are rendered in sRGB color space.

model the surface reflectance priors by learning real world

histogram frequencies; in [44] the prior is modelled as a

uniform distribution over a subset of illuminants while [23]

uses the empirical distribution of the training illuminants.

Our work uses the Bayesian formulation proposed in previ-

ous works [44, 19, 23]. We estimate the likelihood proba-

bility distribution with a CNN which also explicitly learns

to model the prior distribution for each illuminant.

Fully supervised methods. Early learning-based

works [21, 53, 52] comprise combinational and direct ap-

proaches, typically relying on hand-crafted image features

which limited their overall performance. Recent fully su-

pervised convolutional color constancy work offers state-of-

the-art estimation accuracy. Both local patch-based [9, 48,

10] and full image input [6, 34, 7, 25, 28] have been consid-

ered, investigating different model architectures [9, 10, 48]

and the use of semantic information [28, 34, 7].

Some methods frame color constancy as a classifica-

tion problem, e.g. CCC [6] and the follow-up refinement

FFCC [7], by using a color space that identifies image re-

illumination with a histogram shift. Thus, they elegantly

and efficiently evaluate different illuminant candidates. Our

method also discretises the illuminant space but we explic-

itly select the candidate illuminants, allowing for multi-

camera training while FFCC [7] is constrained to use all

histogram bins as candidates and single-camera training.

The method of [38] uses K-means [33] to cluster illu-

minants of the dataset and then applies a CNN to frame the

problem as a classification task; network input is a single

(pre-white balanced) image and output results in K class

probabilities, representing the prospect of each illuminant

(each class) explaining the correct image illumination. Our

method first chooses candidate illuminants similarly, how-

ever, the key difference is that our model learns to infer

whether an image is well white balanced or not. We ask this

question K times by correcting the image, independently,

with each illuminant candidate. This affords an indepen-

dent estimation of the likelihood for each illuminant and

thus enables multi-device training to improve results.

Multi-device training The method of [1] introduces a

two CNN approach; the first network learns a ‘sensor inde-

pendent’ linear transformation (3×3 matrix), the RGB im-

age is transformed to this ‘canonical’ color space and then,

a second network provides the predicted illuminant. The

method is trained on multiple datasets except the test cam-

era and obtains competitive results.

The work of [37] affords fast adaptation to previously

unseen cameras, and robustness to changes in capture de-

vice by leveraging annotated samples across different cam-

eras and datasets in a meta-learning framework.

A recent approach [8], makes an assumption that sRGB

images collected from the web are well white balanced,
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therefore, they apply a simple de-gamma correction to ap-

proximate an inverse tone mapping and then find achro-

matic pixels with a CNN to predict the illuminant. These

web images were captured with unknown cameras, were

processed by different ISP pipelines and might have been

modified with image editing software. Despite additional

assumptions, the method achieves promising results, how-

ever, not comparable with the supervised state-of-the-art.

In contrast we propose an alternative technique to enable

multi-camera training and mitigate well understood sensor

domain-gaps. We can train a single CNN using images

captured by different cameras through the use of camera-

dependent illuminant candidates. This property, of account-

ing for camera-dependent illuminants, affords fast model

adaption; accurate inference is achievable for images cap-

tured by cameras not seen during training, if camera illumi-

nant candidates are available (removing the need for model

re-training or fine-tuning). We provide further methodolog-

ical detail of these contributions and evidence towards their

efficacy in Sections 3 and 4 respectively.

3. Method

Let y = (yr, yg, yb) be a pixel from an input image

Y in linear RGB space. We model the global illumina-

tion, Eq. (2), with the standard linear model [51] such

that each pixel y is the product of the surface reflectance

r = (rr, rg, rb) and a global illuminant ℓ = (ℓr, ℓg, ℓb)
shared by all pixels such that:

yk = rk · ℓk k ∈ {R,G,B}. (3)

Given Y = (y1, . . . ,ym), comprising m pixels, and R =
(r1, . . . , rm), our goal is to estimate ℓ and produce R =
diag(ℓ)−1Y .

In order to estimate the correct illuminant to adjust the

input image Y , we propose to frame the CC problem with

a probabilistic generative model with unknown surface re-

flectances and illuminant. We consider a set ℓi ∈ R
3, i ∈

{1, . . . , n} of candidate illuminants, each of which are ap-

plied to Y to generate a set of n tentatively corrected im-

ages diag(ℓi)
−1Y . Using the set of corrected images as

inputs, we then train a CNN to identify the most probable

illuminants such that the final estimated illuminant is a lin-

ear combination of the candidates. In this section, we first

introduce our general Bayesian framework, followed by our

proposed implementation of the main building blocks of the

model. An overview of the method can be seen in Figure 2.

3.1. Bayesian approach to color constancy

Following the Bayesian formulation previously consid-

ered [44, 19, 23], we assume that the color of the light

and the surface reflectance are independent. Formally

P(ℓ, R)=P(ℓ) P(R), i.e. knowledge of the surface re-

flectance provides us with no additional information about

the illuminant, P( ℓ | R)=P(ℓ). Based on this assumption

we decompose these factors and model them separately.

Using Bayes’ rule, we define the posterior distribution of

ℓ illuminants given the input image Y as:

P( ℓ | Y ) =
P(Y | ℓ ) P(ℓ)

P(Y )
. (4)

We model the likelihood of an observed image Y for a

given illuminant ℓ:

P(Y | ℓ ) =

∫
r

P(Y | ℓ, R = r) P(R = r) dr

= P(R = diag(ℓ)−1Y )

(5)

where R are the surface reflectances and diag(ℓ)−1Y is the

image as corrected with illuminant ℓ. The term P(Y |
ℓ, R = r) is only non-zero for R = diag(ℓ)−1Y . The

likelihood rates whether a corrected image looks realistic.

We choose to instantiate the model of our likelihood us-

ing a shallow CNN. The network should learn to output a

high likelihood if the reflectances look realistic. We model

the prior probability P(ℓ) for each candidate illuminant in-

dependently as learnable parameters in an end-to-end ap-

proach; this effectively acts as a regularisation, favouring

more likely real-world illuminants. We note that, in prac-

tice, the function modelling the prior also depends on fac-

tors such as the environment (indoor / outdoor), the time

of day, ISO etc. However, the size of currently available

datasets prevent us from modelling more complex proxies.

In order to estimate the illuminant ℓ∗, we optimise the

quadratic cost (minimum MSE Bayesian estimator), min-

imised by the mean of the posterior distribution:

ℓ
∗ =

∫
ℓ

ℓ · P( ℓ | Y ) dℓ (6)

This is done in the following three steps (c.f . Figure 2):

1. Candidate selection (Section 3.2): Choose a set of n

illuminant candidates to generate n corrected thumb-

nail (64×64) images.

2. Likelihood estimation (Section 3.3): Evaluate these n

images independently with a CNN, a network designed

to estimate the likelihood that an image is well white

balanced P(Y | ℓ).

3. Illuminant determination (Section 3.4): Compute

the posterior probability of each candidate illuminant

and determine a final illuminant estimation ℓ
∗.

This formulation allows estimation of a posterior prob-

ability distribution, allowing us to reason about a set of
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probable illuminants rather than produce a single illumi-

nant point estimate (c.f . regression approaches). Regression

typically does not provide feedback on a possible set of al-

ternative solutions which has shown to be of high value in

alternative vision problems [35].

The second benefit that our decomposition affords is a

principled multi-camera training process. A single, de-

vice agnostic CNN estimates illuminant likelihoods and

performs independent selection of candidate illuminants for

each camera. By leveraging image information across mul-

tiple datasets we increase model robustness. Additionally,

the amalgamation of small available CC datasets provides a

step towards harnessing the power of large capacity models

for this problem domain c.f . contemporary models.

3.2. Candidate selection

The goal of candidate selection is to discretise the illu-

minant space of a specific camera in order to obtain a set of

representative illuminants (spanning the illuminant space).

Given a collection of ground truth illuminants, measured

from images containing calibration objects (i.e. a labelled

training set), we compute candidates using K-means clus-

tering [33] on the linear RGB space.

By forming n clusters of our measured illuminants, we

define the set of candidates ℓi ∈ R
3, i ∈ {1, . . . , n} as

the cluster centers. K-means illuminant clustering is pre-

viously shown to be effective for color constancy [38] how-

ever we additionally evaluate alternative candidate selec-

tion strategies (detailed in the supplementary material); our

experimental investigation confirms a simple K-means ap-

proach provides strong target task performance. Further, the

effect of K is empirically evaluated in Section 4.4.

Image Y, captured by a given camera, is then used to

produce a set of images, corrected using the illuminant can-

didate set for the camera, on which we evaluate the accuracy

of each candidate.

3.3. Likelihood estimation

We model the likelihood estimation step using a neural

network which, for a given illuminant ℓ and image Y , takes

the tentatively corrected image diag(ℓ)−1Y as input, and

learns to predict the likelihood P (Y |ℓ) that the image has

been well white balanced i.e. has an appearance of being

captured under an achromatic light source.

The success of low capacity histogram based meth-

ods [6, 7] and the inference-training tradeoff for small

datasets motivate a compact network design. We propose

a small CNN with one spatial convolution and subsequent

layers constituting 1×1 convolutions with spatial pooling.

Lastly, three fully connected layers gradually reduce the

dimensionality to one (see supplementary material for ar-

chitecture details). Our network output is then a single

value that represents the log-likelihood that the image is

well white balanced:

log(P(Y | ℓ )) = fW (diag(ℓ)−1Y ). (7)

Function fW is our trained CNN parametrised by model

weights W . Eq. (7) estimates the log-likelihood of each

candidate illuminant separately. It is important to note

that we only train a single CNN which is used to estimate

the likelihood for each candidate illuminant independently.

However, in practice, certain candidate illuminants will be

more common than others. To account for this, follow-

ing [7], we compute an affine transformation of our log-

likelihood log(P(Y | ℓ )) by introducing learnable, illumi-

nant specific, gain Gℓ and bias Bℓ parameters. Gain Gl af-

fords amplification of illuminant likelihoods. The bias term

Bℓ learns to prefer some illuminants i.e. a prior distribution

in a Bayesian sense: Bℓ = log(P(ℓ)). The log-posterior

probability can then be formulated as:

log(P( ℓ | Y )) = Gℓ · log(P(Y | ℓ )) +Bℓ. (8)

We highlight that learned affine transformation parame-

ters are training camera-dependent and provide further dis-

cussion on camera agnostic considerations in Section 3.5.

3.4. Illuminant determination

We require a differentiable method in order to train our

model end-to-end, and therefore the use of a simple Maxi-

mum a Posteriori (MAP) inference strategy is not possible.

Therefore to estimate the illuminant ℓ∗, we use the mini-

mum mean square error Bayesian estimator, which is min-

imised by the posterior mean of ℓ (c.f . Eq. (6)):

ℓ
∗ =

n∑
i=1

ℓi · softmax(log(P(ℓi | Y )))

=
1∑

elog(P(ℓi|Y ))

n∑
i=1

ℓi · e
log(P(ℓi|Y )).

(9)

The resulting vector ℓ
∗ is l2-normalised. We leverage

our K-means centroid representation of the linear RGB

space and use linear interpolation within the convex hull

of feasible illuminants to determine the estimated scene il-

luminant ℓ∗. For Eq. (9), we take inspiration from [29, 38],

who have successfully explored similar strategies in CC and

stereo regression, e.g. [29] introduced an analogous soft-

argmin to estimate disparity values from a set of candidates.

We apply a similar strategy for illuminant estimation and

use the soft-argmax which provides a linear combination of

all candidates weighted by their probabilities.

We train our network end-to-end with the commonly

used angular error loss function, where ℓ
∗ and ℓ

GT are the

prediction and ground truth illuminant, respectively:
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Lerror = arccos(
ℓ
GT · ℓ∗

‖ℓGT ‖‖ℓ∗‖
) (10)

3.5. Multi­device training

As discussed in previous work [1, 41, 22], CC models

typically fail to train successfully using multiple camera

data due to distribution shifts between camera sensors, mak-

ing them intrinsically device-dependent and limiting model

capacity. A device-independent model is highly appealing

due to the small number of images commonly available in

camera-specific public color constancy datasets. The cost

and time associated with collecting and labelling new large

data for specific novel devices is expensive and prohibitive.

Our CNN learns to produce the likelihood that an in-

put image is well white balanced. We claim that framing

part of the CC problem in this fashion results in a device-

independent learning task. We evaluate the benefit of this

hypothesis experimentally in Section 4.

To train with multiple cameras we use camera-specific

candidates, yet learn only a single model. Specifically, we

train with a different camera for each batch, use camera-

specific candidates yet update a single set of CNN parame-

ters during model training. In order to ensure that our CNN

is device-independent, we fix previously learnable parame-

ters that depend on sensor specific illuminants, i.e. Bℓ = 0
and Gℓ = 1. The absence of these parameters, learned

in a camera-dependent fashion, intuitively restricts model

flexibility however we observe this drawback to be com-

pensated by the resulting ability to train using amalgamated

multi-camera datasets i.e. more data. This strategy allows

our CNN to be camera-agnostic and affords the option to

refine existing CNN quality when data from novel cameras

becomes available. We however clarify that our overarch-

ing strategy for white balancing maintains use of camera-

specific candidate illuminants.

4. Results

4.1. Training details

We train our models for 120 epochs and use K-

mean [33] with K=120 candidates. Our batch size is

32, we use the Adam optimiser [30] with initial learning

rate 5×10−3, divided by two after 10, 50 and 80 epochs.

Dropout [27] of 50% is applied after average pooling. We

take the log transform of the input before the first convolu-

tion. Efficient inference is feasible by concatenating each

candidate corrected image into the batch dimension. We

use PyTorch 1.0 [39] and an Nvidia Tesla V100 for our ex-

periments. The first layer is the only spatial convolution, it

is adapted from [49] and pretrained on ImageNet [16]. We

fix the weights of this first layer to avoid over-fitting. The

total amount of weights is 22.8K. For all experiments cali-

bration objects are masked, black level subtracted and over-

saturated pixels are clipped at 95% threshold. We resize the

image to 64×64 and normalise.

4.2. Datasets

We experiment using three public datasets. The Gehler-

Shi dataset [47, 23] contains 568 images of indoor and out-

door scenes. Images were captured using Canon 1D and

Canon 5D cameras. We highlight our awareness of the ex-

istence of multiple sets of non-identical ground-truth labels

for this dataset (see [26] for further detail). Our Gehler-

Shi evaluation is conducted using the SFU ground-truth

labels [47] (consistent with the label naming convention

in [26]). The NUS dataset [14] originally consists of 8
subsets of ∼210 images per camera providing a total of

1736 images. The Cube+ dataset [5] contains 1707 images

captured with Canon 550D camera, consisting of predomi-

nantly outdoor imagery.

For the NUS [14] and Gehler-Shi [47, 23] datasets we

perform three-fold cross validation (CV) using the splits

provided in previous work [7, 6]. The Cube+ [5] dataset

does not provide splits for CV so we use all images for

learning and evaluate using a related set of test images, pro-

vided for the recent Cube+ ISPA 2019 challenge [31]. We

compare with the results from the challenge leader-board.

For the NUS dataset [14], we additionally explore train-

ing multi-camera models and thus create a new set of CV

folds to facilitate this. We are careful to highlight that the

NUS dataset consists of eight image subsets, pertaining to

eight capture devices. Each of our new folds captures a

distinct set of scene content (i.e. sets of up to eight simi-

lar images for each captured scene). This avoids testing on

similar scene content seen during training. We define our

multi-camera CV such that multi-camera fold i is the con-

catenation of images, pertaining to common scenes, cap-

tured from all eight cameras. The folds that we define are

made available in our supplementary material.

4.3. Evaluation metrics

We use the standard angular error metric for quantitative

evaluation (c.f . Eq. (10)). We report standard CC statistics

to summarise results over the investigated datasets: Mean,

Median, Trimean, Best 25%, Worst 25%. We further re-

port method inference time in the supplementary material.

Other works’ results were taken from corresponding pa-

pers, resulting in missing statistics for some methods. The

NUS [14] dataset is composed of 8 cameras, we report the

geometric mean of each statistic for each method across all

cameras as standard in the literature [7, 6, 28].

4.4. Quantitative evaluation

Accuracy experiments. We report competitive results on

the dataset of Gehler-Shi [47, 23] (c.f . Table 1). This dataset
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Method Mean Med. Tri. Best 25% Worst 25%

Gray-world [12] 6.36 6.28 6.28 2.33 10.58

White-Patch [11] 7.55 5.86 6.35 1.45 16.12

Bayesian [23] 4.82 3.46 3.88 1.26 10.49

Quasi-unsupervised [8] 2.91 1.98 - - -

Afifi et al. 2019 [1] 2.77 1.93 - 0.55 6.53

Meta-AWB [37] 2.57 1.84 1.94 0.47 6.11

Cheng et al. 2015 [15] 2.42 1.65 1.75 0.38 5.87

CM 2019 [25] 2.48 1.61 1.80 0.47 5.97

Oh et al. [38] 2.16 1.47 1.61 0.37 5.12

CCC [6] 1.95 1.22 1.38 0.35 4.76

DS-Net [48] 1.90 1.12 1.33 0.31 4.84

FC4 [28] (SqueezeNet) 1.65 1.18 1.27 0.38 3.78

FC4 [28] (AlexNet) 1.77 1.11 1.29 0.34 4.29

FFCC [7] (model P) 1.61 0.86 1.02 0.23 4.27

Ours 2.35 1.43 1.63 0.40 5.80

Ours (pretrained) 2.10 1.32 1.53 0.36 5.10

Table 1. Angular error statistics for Gehler-Shi dataset [47, 23].

can be considered very challenging as the number of images

per camera is imbalanced: There are 86 Canon 1D and 482
Canon 5D images. Our method is not able to outperform

the state-of-the-art likely due to the imbalanced nature and

small size of Canon 1D. Pretraining on a combination of

NUS [14] and Cube+ [5] provides moderate accuracy im-

provement despite the fact that the Gehler-Shi dataset has

a significantly different illuminant distribution compared to

those seen during pre-training. We provide additional ex-

periments, exploring the effect of varying K, for K-means

candidate selection in the supplementary material.

Results for NUS [14] are provided in Table 2. Our

method obtains competitive accuracy and the previously

observed trend, pre-training using additional datasets (here

Gehler-Shi [47, 23] and Cube+ [5]), again improves results.

In Table 3, we report results for our multi-device setting

on the NUS [14] dataset. For this experiment we introduce

a new set of training folds to ensure that scenes are well

separated and refer to Sections 3.5 for multi-device training

and 4.2 for related training folds detail. We draw multi-

device comparison with FFCC [7], by choosing to center

the FFCC histogram with the training set (of amalgamated

camera datasets). Note that results are not directly com-

parable with Table 2 due to our redefinition of CV folds.

Our method is more accurate than the state-of-the-art when

training considers all available cameras at the same time.

Note that multi-device training improves the median angu-

lar error of each individual camera dataset (we provide re-

sults in the supplementary material). Overall performance

is improved by ∼11% in terms of median accuracy.

We also outperform the state-of-the-art on the recent

Cube challenge [31] as shown in Table 4. Pretraining to-

gether on Gehler-Shi [47, 23] and NUS [14] improves our

Mean and Worst 95% statistics.

In summary, we observe strong generalisation when

using multiple camera training (e.g. NUS [14] results

c.f . Tables 2 and 3). These experiments illustrate the

Method Mean Med. Tri. Best 25% Worst 25%

White-patch [11] 9.91 7.44 8.78 1.44 21.27

Gray-world [12] 4.59 3.46 3.81 1.16 9.85

Bayesian [23] 3.50 2.36 2.57 0.78 8.02

Oh et al. [38] 2.36 2.09 - - 4.16

Quasi-unsupervised [8] 1.97 1.91 - - -

CM 2019 [25] 2.25 1.59 1.74 0.50 5.13

FC4 [28] (SqueezeNet) 2.23 1.57 1.72 0.47 5.15

FC4 [28] (AlexNet) 2.12 1.53 1.67 0.48 4.78

Afifi et al. 2019 [1] 2.05 1.50 - 0.52 4.48

CCC [6] 2.38 1.48 1.69 0.45 5.85

Cheng et al. 2015 [15] 2.18 1.48 1.64 0.46 5.03

DS-Net [48] 2.21 1.46 1.68 0.48 6.08

Meta-AWB [37] 1.89 1.34 1.44 0.45 4.28

FFCC [7] (model Q) 2.06 1.39 1.53 0.39 4.80

FFCC [7] (model M) 1.99 1.31 1.43 0.35 4.75

Ours 2.39 1.61 1.74 0.50 5.67

Ours (pretrained) 2.35 1.55 1.73 0.46 5.62

Table 2. Angular error statistics for NUS [14].

Method Mean Med. Tri. Best 25% Worst 25%

One model per device

FFCC [7] (model Q) 2.37 1.50 1.69 0.46 5.76

Ours (pretrained) 2.35 1.48 1.67 0.47 5.71

Multi-device training

FFCC [7] (model Q) 2.59 1.77 1.94 0.52 6.14

Ours (pretrained) 2.22 1.33 1.53 0.44 5.49

Table 3. Angular error statistics for NUS [14] using multi-device

cross-validation folds (see Section 4.2). FFCC model Q is consid-

ered for fair comparison (thumbnail resolution input).

Method Mean Med. Tri. Best 25% Worst 25%

Gray-world [12] 4.44 3.50 - 0.77 9.64

1st-order Gray-Edge [50] 3.51 2.30 - 0.56 8.53

V Vuk et al. [31] 6.00 1.96 2.25 0.99 18.81

Y Qian et al. [31] 2.21 1.32 1.41 0.43 5.65

K Chen et al. [31] 1.84 1.27 1.32 0.39 4.41

Y Qian et al. [40] 2.27 1.26 1.35 0.39 6.02

Afifi et al. 2019 [1] 2.10 1.23 - 0.47 5.38

FFCC [7] (model J) 2.10 1.23 1.34 0.47 5.38

A Savchik et al. [46] 2.05 1.20 1.30 0.40 5.24

WB-sRGB [3, 1] 1.83 1.15 - 0.35 4.60

Ours 1.99 1.06 1.14 0.35 5.35

Ours (pretrained) 1.95 1.16 1.25 0.39 4.99

Table 4. Angular error for Cube challenge [31].

large benefit achievable with multi-camera training when

illuminant distributions of the cameras are broadly consis-

tent. Gehler-Shi [47, 23] has a very disparate illuminant

distribution with respect to alternative datasets and we are

likely unable to exploit the full advantage of multi-camera

training. We note the FFCC [7] state of the art method

is extremely shallow and therefore optimised for small

datasets. In contrast, when our model is trained on large

and relevant datasets we are able to achieve superior results.

Run time. Regarding run-time; we measure inference

speed at ∼10 milliseconds, implemented in unoptimised

PyTorch (see supplementary material for further detail).
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4.5. Training on novel sensors

To explore camera agnostic elements of our model, we

train on a combination of the full NUS [14] and Gehler-

Shi [47, 23] datasets. As described in Section 3.5, the only

remaining device dependent component involves perform-

ing illuminant candidate selection per device. Once the

model is trained, we select candidates from Cube+ [5] and

test on the Cube challenge dataset [31]. We highlight that

neither Cube+ nor Cube challenge imagery is seen during

model training. For meaningful evaluation, we compare

against both classical and recent learning-based [1] camera-

agnostic methods. Results are shown in Table 5. We obtain

results that are comparable to Table 4 without seeing any

imagery from our target camera, outperforming both base-

lines and [1]. We clarify that our method performs candi-

date selection using Cube+ [5] to adapt the candidate set

to the novel device while [1] does not see any information

from the new camera.

We provide additional experimental results for differing

values of K (K-means candidate selection) in the supple-

mentary material. We observe stability for K >= 25. The

low number of candidates required is likely linked to the

two Cube datasets having reasonably compact distributions.

4.6. Qualitative evaluation

We provide visual results for the Gehler-Shi [47, 23]

dataset in Figure 3. We sort inference results by increasing

angular error and sample 5 images uniformly. For each row,

we show (a) the input image (b) our estimated illuminant

color and resulting white-balanced image (c) the ground

truth illuminant color and resulting white-balanced image.

Images are first white-balanced, then, we apply an estimated

CCM (Color Correction Matrix), and finally, sRGB gamma

correction. We mask out the Macbeth Color Checker cali-

bration object during both training and evaluation.

Our most challenging example (c.f . last row of Figure 3)

is a multi-illuminant scene (indoor and outdoor lights), we

observe our method performs accurate correction for ob-

jects illuminated by the outdoor light, yet the ground truth

is only measured for the indoor illuminant, hence the high

angular error. This highlights the limitation linked to our

single global illuminant assumption, common to the major-

ity of CC algorithms. We show additional qualitative results

in the supplementary material.

Method Mean Med. Tri. Best 25% Worst 25%

Gray-world [12] 4.44 3.50 - 0.77 9.64

1st-order Gray-Edge [50] 3.51 2.30 - 0.56 8.53

Afifi et al. 2019 [1] 2.89 1.72 - 0.71 7.06

Ours 2.07 1.31 1.43 0.41 5.12

Table 5. Angular error for the Cube challenge [31] trained solely

on the dataset of NUS [14] and Gehler-Shi [47, 23]. For our

method, candidate selection is performed on Cube+ [5] dataset.

5. Conclusion

We propose a novel multi-hypothesis color constancy

model capable of effectively learning from image samples

that were captured by multiple cameras. We frame the prob-

lem under a Bayesian formulation and obtain data-driven

likelihood estimates by learning to classify achromatic im-

agery. We highlight the challenging nature of multi-device

learning due to camera color space differences, spectral sen-

sitivity and physical sensor effects. We validate the benefits

of our proposed solution for multi-device learning and pro-

vide state-of-the-art results on two popular color constancy

datasets while maintaining real-time inference constraints.

We additionally provide evidence supporting our claims that

framing the learning question as a classification task c.f . re-

gression can lead to strong performance without requiring

model re-training or fine-tuning.

(a) Input image (b) Our prediction (c) Ground Truth

Error: 0.03°

Error: 0.65°

Error: 1.33°

Error: 2.82°

Error: 14.62°

Figure 3. Example results taken from the Gehler-Shi [47, 23]

dataset. Input, our result and ground truth per row. Images to vi-

sualise are chosen by sorting all test images using increasing error

and evenly sampling images according to that ordering. Images

are rendered in sRGB color space.
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