COMPUTER ANIMATION AND VIRTUAL WORLDS
Comp. Anim. Virtual Worlds 2017; 28: 1686
Published online 8 December 2015 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/cav. 1686

RESEARCH ARTICLE

Interactive light source position estimation for
augmented reality with an RGB-D camera

Bastiaan J. Boom'*, Sergio Orts-Escolano?, Xin X. Ning', Steven McDonagh’,
Peter Sandilands’ and Robert B. Fisher'

1 School of Informatics, University of Edinburgh, Edinburgh, UK
2 Dpt. Computer Technology Computation, University of Alicante, Alicante, Spain

ABSTRACT

The first hybrid CPU-GPU based method for estimating a point light source position in a scene recorded by an RGB-D
camera is presented. The image and depth information from the Kinect is enough to estimate a light position in a scene,
which allows for the rendering of synthetic objects into a scene that appears realistic enough for augmented reality pur-
poses. This method does not require a light probe or other physical device. To make this method suitable for augmented
reality, we developed a hybrid implementation that performs light estimation in under 1 second. This is sufficient for most
augmented reality scenarios because both the position of the light source and the position of the Kinect are typically fixed.
The method is able to estimate the angle of the light source with an average error of 20°. By rendering synthetic objects
into the recorded scene, we illustrate that this accuracy is good enough for the rendered objects to look realistic. Copyright

© 2015 John Wiley & Sons, Ltd.

KEYWORDS

light source estimation; augmented reality; GPU implementation; RGB-D camera

Supporting information may be found in the online version of this article.

*Correspondence

Bastiaan J. Boom, School of Informatics, University of Edinburgh, Edinburgh, 10 Crichton Street, Edinburgh, EH8 9AB, UK.

E-mail: bas.boom12@gmail.com, bboom@inf.ed.ac.uk

1. INTRODUCTION

The appearance of objects in a scene depends on their illu-
mination. In augmented reality, this illumination is often
not taken into account, which makes any rendered syn-
thetic objects look unrealistic. A Kinect sensor can obtain
a depth map of the scene, enabling more realistic inter-
actions between real objects and augmented objects [1,2].
The goal of our work is to estimate the illuminant position
in the scene based on the intensity image and depth map
provided by the Kinect sensor for the purpose of improving
the augmented reality experience (Figure 1). In this paper,
an estimate of the illuminant position is computed based on
the Kinect’s depth and intensity images without any human
annotations of light sources or known objects in the scene.
This work uses the Kinect; however, the techniques are not
limited to this sensor and any RGB-D camera that provides
a registered multispectral image and depth map allows the
estimation of the illuminant in the scene.

This paper is focussed towards the application of aug-
mented reality, although the estimation of the illuminant
is applicable in multiple domains (like surface improve-
ment, scene understanding, illumination invariant scenes,

Copyright © 2015 John Wiley & Sons, Ltd.

etc). We have developed a methodology to estimate the
location of a single point light source based on the image
and the depth map provided by the Kinect, first described
in [3]. In this paper, we focus on making it applicable
for augmented reality, by building a hybrid computer pro-
cessing unit (CPU)—graphics processing unit (GPU) (i.e.
‘hybrid’ in the remainder of the paper) implementation for
some of the methods using the Point Cloud Library. We
show that a light source estimation can be performed in
1 second, which, in combination with other methods (like
Simultaneous Localization And Mapping), can lead to a
better augmented reality experience.
The main contributions of this paper are as follows:

GPU implementation of methodology: We show that it is
possible to run the method introduced in [3] on a GPU, pro-
cessing the incoming Kinect data with an average speed of
more than 1 frame per second. This interactive implemen-
tation has potential benefits to graphics applications and
game designers.

Creation of dataset: A public dataset is created to mea-
sure and verify the performance of our methodology. In this
dataset, we measure the light position and angle relative

1 0of 16

Interactive light source position estimation

Figure 1. A synthetic object (dragon, right) that is rendered into

a real-world scene recorded with the Kinect, where the illumi-

nation of the synthetic object is similar to the scene and the

rendered shadows take into account the geometry of the scene

based on an estimated light source position determined using
only the intensity image and depth information.

to the Kinect scenes. The dataset contains multiple scenes
recorded by the Kinect, where we have known positions of
the light sources, the scene surface points and registered
colour data. This dataset will be made publicly available
after publication.’

Extended experiments: New experiments are added to
investigate the influence of the hybrid implementation on
the results. The hybrid implementation requires different
algorithmic choices that affect both the accuracy and speed.
The two key properties that allow the presented algorithm
to work are as follows:

(1) Most surfaces can be roughly approximated as Lam-
bertian, and so the surface normals estimated from
range data allow an approximate synthesis of the
appearance given a light source position. In this
case, the surface appearance provides partial con-
straints on the position of the light source.

(2) Segmented surface patches based on colour and
distance tend to have the same albedo.

This leads to an algorithm that, given an intensity image
with associated depth and surface normals at every point,
renders images from different hypothesised light source
positions and selects the position whose synthesised image
best matches the original image. The algorithm can be
summarised as follows:

(1) Given a candidate light source position, estimate
the albedo at every image pixel (using the surface
normal and light source position)

(2) Given segmented image regions, combine the indi-
vidual albedo estimates to obtain an estimated
albedo for the entire surface segment

(http://www.dtic.ua.es/jgpu12/lightEstimation/, password: ligh-
tEstimationEdi).

2 of 16

B. J. Boom et al.

(3) Using the estimated segment albedos, point sur-
face normals and light source position, synthesise an
image of the scene

(4) Compute the error between the synthesised and
captured real images

(5) Optimise the light source position to minimise
the error

2. RELATED WORK

In this research, we focussed on improving a part of the
augmented reality experience, that is, the illumination of
rendered synthetic objects in a scene. In this case, the
research question is how to obtain an estimate of the light
source position that can be used by rendering software.
We assume that other steps necessary for the augmented
reality experience, like positional tracking (e.g. Simulta-
neous Localization and Mapping or Parallel Tracking and
Mapping) and rendering software are available. In our lit-
erature study and the remainder of this paper, we will
mainly focus on the estimation of the illuminant. This is
an old research subject, where, based on the image infor-
mation and often scene geometry, information about the
illuminant can be estimated. Both the overview paper of
[4] and [5] discussed that inverse rendering is a problem
with multiple unknowns, which can be the lighting, texture,
geometry and BRDF, where [5] uses spherical harmonics
to put these problems into a signal processing framework.
Most papers assume a known geometry in the scene that
allows them to estimate one or multiple unknowns. The
approach described in [6-9] estimates the illuminant by
taking advantage of the cast shadows and specular reflec-
tions of known geometry in the scene. Extensions to these
papers are performed in [10], which only needs boundaries
of an object, and [11], which assume different reflectance
models. Recent work by [12] is inspired by the human
visual system to use the object silhouette to estimate mul-
tiple light sources from a single image. In [13,14], a
stereo setup is used together with a probe sphere (in their
case a white shiny ball) to determine multiple area light
sources. The work of [15] determines the illuminant of a
scene accurately using a mirror surface probe sphere to
determine light maps of the scene from different exposed
photographs. These light maps are a more dynamic way of
modelling the illumination than assuming some synthetic
light source. Augmented reality based on mirror surface
probe spheres to estimate the illumination is performed
by [16-18]. In Computational Color Constancy, the main
interest is the colour of the light source; however, this often
also requires some estimation of the light direction (good
overview papers are [19,20]). There is work in estimating
the illumination in outdoor scenes, often for augmented
reality, without probe spheres [21-23], using properties of
sunlight and shadows. Recent work of [24] uses movement
of the camera and known properties of sunlight to deter-
mine outdoor illumination conditions. Augmented reality
in outdoor scenes is studied by [25,26], where the detection
of the light source in the outdoor environment is performed

Comp. Anim. Virtual Worlds 2017; 28: 1686 © 2015 John Wiley & Sons, Ltd.

DOI: 10.1002/cav

B. J. Boom et al.

using GPS and compass information. A 3D sensor is used
for realistic shadow rendering. Another clue to estimate the
illumination in a scene are the shadows that have been used
in [27-29]. In [30], a double camera system is used for aug-
mented reality, where the first camera films the actual scene
while a fish-eye camera is used for filming the position of
the light on the ceiling. Rendering based on photographs
where light sources, that is, windows and ceiling lights,
are annotated by users is performed in [17,31,32], which is
related to the virtual light design of buildings by optimal
placing light sources [33].

Recent work on illuminant estimation by [34,35] tries
to decompose the RGB-D input into albedo and shading
fields in order to explain the scene. Other work focusses
on using the light estimates for shape from shading to
improve the depth maps given by the RGB-D cameras
[36]. Our previous work [3] focusses more on using the
illuminant estimation in augmented reality, where com-
putation time and compatibility with rendering software
are more important than a perfect explanation of the
underlying scene.

The paper is structured as following: (1) The theory
of this method is first described and (2) we implement a
hybrid method to allow interactive use. (3) Experiments in
realistic scenes show that we can estimate the light direc-
tion accurately to 20°. 4) Finally, examples of synthetic
objects rendered realistically into real images are shown.

3. EXPLANATION OF LIGHT
SOURCE ESTIMATION METHOD

As the work of [5] already shows, inverse rendering is a
difficult problem, which requires certain assumptions to
cope with all the unknowns. This method presented here
assumes diffuse surfaces (Lambertian reflectance model),
uniform albedo over contiguous regions, a single light
source and no cast shadows. A distinction between cast
(caused by the blockage of the light source by the object)
and attached shadows (surface patches facing away from
the light source) is made. Cast shadows are not mod-
elled because their presence is difficult to predict. For
example, there may be objects that are not visible in the
camera’s field of view, but which cast shadows onto the
observed scene. Attached shadows are modelled as will
be discussed later. The first assumption is that the inter-
action between light source and object can be modelled
by the Lambertian reflectance model. This gives us the
following equation:

I,(p) = p(p) min(n(p)s(p)”i,0) (1)

According to the Lambertian reflectance model
(Equation (1)), the image intensity I, at pixel p = {x,y}
can be calculated given the albedo p, the surface normal
n(p) of the object at p and the direction s(p) and intensity
i of the light.*

*For simplicity, we assume i is constant but real scenes are
affected by light attenuation of % where d is the distance. In
our experiment, the effects of the Lambertian equation were
more dominant.

Comp. Anim. Virtual Worlds 2017; 28: 1686 © 2015 John Wiley & Sons, Ltd.

DOI: 10.1002/cav

Interactive light source position estimation

CI—xp)
S0 = > @

where 1 is the light source position and x(p) is the 3D posi-
tion of point p in the depth map. We assume that there
is only a single dominant point light source present in
the scene. The Kinect sensor gives the image intensities /
and a 3D depth map. A small proportion of image inten-
sity values do not have associated depth information (these
image intensities are not used in our method). Given the
3D depth map, the surface normals n are computed using
[37]. A schematic representation of our method is given
in Figure 2 that shows the 3D depth map and the surface
normals. The remaining unknown variables in the Lamber-
tian reflectance model are the albedo p and the direction
s and intensity i of the light, making this equation still
underdetermined. The second assumption is that the albedo
of objects is similar in contiguous regions and that dif-
ferent albedo values on the same object are often easy
to distinguish. Our methodology uses this assumption by
using a colour-based segmentation method. Figure 2 step
b shows an example of the segmentation), dividing the set
of all image pixels P into contiguous segments (subsets)
P = {Ry,...,Ry} that have a similar albedo p. Because
the albedo is nearly constant in a segment, the estimated
albedo p at each pixel p € R; is set to the average albedo
in that segment. This allows us to estimate the albedo
of segment R; (Equation (3)) for an arbitary light source

sr(P), ir- -
L(p

3

~ IRl p%; n@)s, (0)7ir ®

The main observation this paper uses is that in the
original image, a segment is likely to contain a gradient
in the image intensity because of the light source posi-
tion and the normals of the surface, while the albedo is
similar for the entire segment. By optimising the light
source position, a better explanation of this intensity gra-
dient can be found. We combine information from all
segments R; with j = {1,..., N} to obtain the full recon-
structed image /. The light source position is determined
by minimising (Equation (5)) the difference between the
original intensity image /, and the reconstructed image I,
(Equation (4)).

1,(p) = pg, min(n(p)s(p) .0} p € Ry (4)

(s(@). i} = arg min, PR IACE A E

pEP

We search for the light source position that recon-
structs an image I, (bottom-right panel in Figure 2) that
is closest to the original image I, (bottom-left). For
these images only intensity pixels with depth informa-
tion are considered. The next section gives more details
on the segmentation methods used to obtain the segments
Ry, ..., Rn.

3 of 16

Interactive light source position estimation

Depth Map
conversion to
Vertex Map

.

v

RGB(D) Map
Segmentation

(b)

Grayscale
Conversion

()

B. J. Boom et al.

Normal
estimation

(e) J Estimated Point Light
S
Reconstruct
S| | e Malbedo
segments
) (@) (h ¥

v

Light Source
Estimation

Improve light
source Compute
estimation. €7 difference [€
(Minimization)

0 o 4

Figure 2. A schematic representation of the method to estimate the light source position, where given the input (depth map and

image shown left), we compute the normals (top-right) and segments (middle). Afterwards we search for the light source position

that gives the best reconstructed image (bottom-right) by minimising the distance with the original image (bottom-middle), allowing

us to find the light source direction shown in (middle-right). The method in box e is expanded to show the contained sub-methods
(boxes f toj).

3.1. Segmentation

Segmentation (Figure 2, step b) is used to find regions that
have approximately the same albedo, where we assume
that the same image colour implies the same albedo. In
principle, any colour-based image segmentation method
can be used to obtain the regions we consider to have the
same albedo. Our experiments on the CPU are performed
using the colour-based segmentation method described
in [38], where we remove segments that are smaller than
A = 100 pixels because they are often noisy and do
not contain enough gradient information necessary for the
minimization (Figure 2, step 1).

3.2. Error Function

The error function E (Figure 2, step j) is minimised
(Figure 2, step 1) to find the light position. The error func-
tion is the L2-norm between the original image intensity
I, and the reconstructed image intensity /, (Equation (4)),
which can be minimised over parameters (s(p),i) of the
light source position (Equation (5)). By using a recon-
structed image, it is relatively easy to visually verify how
well the observed scene can be explained by this method.
To reconstruct the image I, given the Lambertian model
(Equation (4)), the normals n and albedo pg; of the objects
are needed together with the light direction s(p) and light
intensity i. From the depth map, we are able to compute the
normal using [37]. In order to minimise the error function,
the light source parameters (s(p), i) are the search parame-
ters. The minimization method searches the (s(p), i) space
to minimise Equation (5), leaving the albedo as the only
unknown. Given an estimate of the parameters, (s,(p), ir),

4 of 16

the albedo p, can be computed for every position p using
the Lambertian equation:

pr(p) = (6)

o
n(p)s(p)"ir

Given the assumption that the albedo p, of segment R; is
the same for all positions in the segment p € R;, the albedo
of the segment pg; can be estimated by taking the mean or
median p, at all positions where the reflectance is larger
than zero (n(p)s,(p)7i, > 0). However, if the normals n
are almost perpendicular to the light direction s, the albedo
estimate becomes very unstable, which makes the median a
better estimate for pg;. Notice that by estimating the albedo
using the light source, the albedo varies inversely with the
light intensity i,. Therefore, the light intensity is arbitrarily
settoi, = 1.

Given the estimated albedo PR; for each segment, we can
synthesise the entire reconstructed image /.. In the case
of an attached shadow pixel p (n(p)s,(p)’i, <= 0), the
synthesised image intensity values are set to zero, while
cast shadows are not taken into account. The difference
between the reconstructed image /, and the original image
intensity I, (Equation (5)) is then minimised. The error
field E() is visualised by computing the error function in
a grid over the scene (Figure 5). The large balls show that
there is a global minimum in a position near the measured
light position.

3.3. Search Method

To find the light parameters, several search strategies
can be used. In the previous section, we observed that
albedo and intensity are related allowing us to set the light

Comp. Anim. Virtual Worlds 2017; 28: 1686 © 2015 John Wiley & Sons, Ltd.

DOI: 10.1002/cav

B. J. Boom et al.

intensity (i, = 1). In the case of a point light source, we
can thus optimise over the variables (x, y, z-position of 1).
Then, using the position of the light source 1, compute the
light direction s(p) for every position p. The light position
is found in the case of a CPU using the downhill simplex
method [39]. The viewpoint of the Kinect is used as the ini-
tial light source position, which allows an initial estimate
of the albedo using Equation (6). The initial stepsize of the
downhill simplex method to search for a point light source
position 1 is 10cm and the minimization will continue
until convergence.

4. HYBRID IMPLEMENTATION

Many works have taken advantage of massively parallel
architectures like the GPU for obtaining interactive frame
rates when doing point cloud processing. In [1] the main
part of the algorithm is implemented on the GPU enabling
interactive 3D reconstruction and interaction with the envi-
ronment using a moving depth camera like the Kinect. The
authors in [40] leverage the computing power of the GPU
to perform a textured 6 DoF (Degrees Of Freedom) recon-
struction in real-time, performing the pre-processing and
the main core of the algorithm on the GPU.

The main focus of this section is on the implementa-
tion of our light estimation algorithm and the extended
GPU pipeline, which is critical for enabling the estima-
tion of the current light source position at interactive rates.
Interactive frame rates also allow rendering realistic shad-
ows in augmented reality scenes, thereby creating more
realistic scenes.

For the hybrid implementation, searching in a large
grid of possible light source positions in parallel is eas-
ier because there are no dependencies in each iteration
unlike with the downhill simplex method. The light posi-
tion in the scene typically does not change from frame to
frame, which allows us to refine the grid search (i.e. by
initializing based on previous interation’s optimum) given
the next frame, enabling us to determine the light posi-
tion accurately within a couple of frames. However, in our
experiments only a single frame is used to compare the
downhill simplex (CPU) with the grid sampling (GPU).

Not every part of the CPU implementation is easy to per-
form on the GPU; for instance, calculation of the median
of the albedo of the segments is an expensive operation on
the GPU. We address this by introducing a ‘robust mean’,
removing all albedo values above a certain threshold (z =
2.5), which gave experimentally better estimates than the
normal mean and offers comparative accuracy performance
to the median.

The current CPU segmentation method cannot be run
in parallel [41], where [41] mentions also alternative
parallel image segmentation techniques. In this paper, a
parallel image segmentation is given that also use the
depth information from the Kinect sensor, which is a
hybrid CPU-GPU method. The depth information is not
necessarily related to the albedo, but we assume depth

Comp. Anim. Virtual Worlds 2017; 28: 1686 © 2015 John Wiley & Sons, Ltd.

DOI: 10.1002/cav

Interactive light source position estimation

discontinuities provide useful additional clues for object
boundary segmentation. These segmentation methods will
be discussed in the subsection ‘Segmentation’.

4.1. Workflow

Most of the steps involved in the method are pointwise and
therefore are well suited to be implemented on the GPU.
While running this method on the CPU requires computing
each point sequentially, the GPU performs the computa-
tion at many points in parallel, accelerating the execution
time of each step considerably. In this case, not only the
processing of the point cloud is performed on the GPU, but
also the pre-processing of the RGB-D map is performed
on the GPU projecting the depth map obtained from the
sensor to a point cloud. Figure 3 shows the workflow for
the GPU implementation from raw depth and color maps
to estimated light source position. Each of these steps is
executed in parallel on the GPU using the CUDA language
[42] and the Point Cloud Library [43], which offers various
algorithms and data structures for point cloud processing
and visualisation.

4.2. Pre-processing of Depth and
Colour Information

The first step to be performed on the raw depth map is an
upsampling filtering technique [44] because of the noise
present in the depth maps provided by the Kinect sensor.
We used the traditional bilateral upsampling filter imple-
mented on the GPU [45]. For every frame ¢ obtained from
the sensor, we launch as many CUDA threads as there
are pixels in the depth map. Each CUDA thread computes
in parallel a different pixel p = {x,y}. After applying
the denoising method, each GPU thread projects a spe-
cific depth value to a 3D vertex in the camera’s coordinate
system using the intrinsic calibration parameters of the
RGB-D sensor. This allows us to obtain an organised vertex
map computed in parallel. Corresponding normal vectors
for each vertex are also computed by each GPU thread
by performing Principal Components Analysis over a local
point neighbourhood in parallel. The normal vector is the
outward facing Eigenvector with the smallest Eigenvalue.

The normal estimation is accelerated considerably on
the GPU. Moreover, the normal estimation step takes
advantage of the organised point cloud provided by the
Kinect Sensor to perform a faster nearest neighbour search.
Thanks to the organisation of the point cloud, a fixed sized
window can be used as the search space for nearest neigh-
bour search and thus considerably accelerate the normal
estimation process. Running this algorithm on the CPU
would not be able to provide interactive processing rates
because of the complexity of the algorithm and the number
of points that must be calculated sequentially.

Finally, the RGB color map obtained from the Kinect
sensor is also processed in parallel, performing color space
conversion to the Hue, Saturation, Value space and then to

5 of 16

Interactive light source position estimation

B. J. Boom et al.

CPU

GPU

l

i Depth and color map

acquisition
/

Point cloud segmentation

Region extraction }4— Distance graph computation

Grid-based energy minimization search

3D scene with Point light |
(<

Point cloud preprocessing

>

Depth Map Upsampling
Filtering

R

Depth Map conversion to
Vertex Map

v

Normal estimation

v

HSV and Grayscale color
conversion

e

Assume light position <+

Compute PointView Map:
Distance and direction vectors

Compute PointLight Map:
Distance and direction vectors

Compute Attenuation,
reflectance, albedo maps

Compute reconstructed map
. Am—

Compute energy | —

estimation

Figure 3. Extended workflow diagram for computing the Light Source Position Estimation algorithm on the graphics processing unit
(GPU). Note that most of the steps have been moved to the GPU in order to achieve a runtime faster than 1 second on an off-the-shelf
consumer GPU.

grayscale. These two representations will be used later in
the segmentation and light position estimation modules.

4.3. Segmentation

To achieve interactive performance in the hybrid imple-
mentation, the segmentation step has been adapted, so that
it can be partially computed in parallel on the GPU. As the
initially proposed segmentation algorithm is iterative, for
the GPU implementation, we propose a hybrid approach
capable of computing the segmentation partially on the
GPU and afterwards computing the region extraction algo-
rithm on the CPU. We extract patches of points with
similar colour, curvature and close proximity in Euclidean
distance. The depth information previously obtained (and
already hosted in the GPU memory) is used to aid the
segmentation process.

The proposed algorithm uses the same approach as other
region growing-based algorithms [46—48]. The main dif-
ference is the parallel computation of distances in different

6 of 16

spaces using the pixel’s neighbourhood and the use of all
available information: Euclidean distances, curvature and
colorimetric distances. The similarity function between
pixels is given by:

belongsregion = (||P - q” =< Td) A (|a_ Cq| =< TC)

A (Inp X ng| < cosean)

where (||[p — ¢|| < Ty) is a constraint based on the
Euclidean distance between points p and ¢q. T is obtained
in real-time based on the point cloud resolution: the mean
distance for each point p in its eight-neighbourhood £ is
calculated. Next, based on the average of these mean dis-
tances and the standard deviation, threshold 7, is given
by Ty = dy + o4, where dj, is the mean distance and oy
is the standard deviation of all computed distances. The
established threshold for the maximum angle between the
two normal vectors is €g . This is calculated in the same
way as T4, obtaining an angle threshold using the average

Comp. Anim. Virtual Worlds 2017; 28: 1686 © 2015 John Wiley & Sons, Ltd.

DOI: 10.1002/cav

B. J. Boom et al.

of mean angles in an eight-neighbourhood and the stan-
dard deviation. The target point will belong to the actual
region if it is close in Euclidean space to the actual region
and if the angle between normal vectors of both points are
lower than an established threshold €9, Furthermore, the
colorimetric distance (in Hue, Saturation, Value) between
the mean colour C, of the actual region R, and the targeted
point g is calculated. Colorimetric distance is calculated
using the following metric as discussed in [49], where
Cr = (hy,sp,vy) and Cy = (hy, 54,vg)

|Cr — Cyl = [(srvr oS hi; — 54V4 COS hq)2
+ (spvrsinhy, — s4vg sin hq)2 (8)

+(vr— vq)z](i)

The proposed GPU segmentation algorithm takes advan-
tage of the matrix organisation in which the 3D points are
stored and the fact that they are already stored in the GPU
memory. In this way, it is possible to calculate distances
in Euclidean, curvature and colorimetric spaces for each
point in the scene in parallel. Point distances are calculated
relative to a point’s direct neighbours in the vertical, hori-
zontal and diagonal directions, resulting in eight distances
for each pixel. The pre-computation of these distances on
the GPU is then used in a region growing-based segmen-
tation using increasing distances in all spaces, deciding if
neighbouring points must be added to the current region.
This last step is performed on the CPU and uses all the

Interactive light source position estimation

pre-computed distances in order to considerably acceler-
ate this process. Furthermore, with the aim of removing
the segments with a certain level of noise, segments with
a number of points less than A = 100 pixels, previously
defined, are deleted.

The resulting implementation of this step yields a run-
ning time below 100 ms, allowing continuation with the
next step on the GPU. This efficient version allows sig-
nificantly lower runtimes compared with the CPU version,
and therefore, the entire system is capable of running at
interactive rates.

In this paper, we proposed an accelerated segmentation
algorithm based on the classical region-growing segmen-
tation approach. The proposed implementation is defined
as a hybrid one; the first part of the algorithm (comput-
ing pixel distances between each pixel and its neighbours)
is executed in parallel on the GPU. This considerably
accelerates the runtime. The second part (pixel grouping)
cannot be parallelized, and therefore, it is computed on
the CPU taking advantage of GPU pre-computed distances.
Table II shows how the compute distances step is acceler-
ated by a factor of 7-25, reducing the computational time
from 100 ms to in the best case 4 ms and therefore reduc-
ing the runtime of the whole segmentation process. The
pixel grouping component is executed on the CPU, while
computing cloud resolution is performed by the GPU. By
overlapping the use of both processors, we optimally make
use of available computing resources.

Figure 4 shows an example of the segmentation pro-
duced by the proposed hybrid implementation. Results
obtained are reasonably good, allowing the detection of

Figure 4. Point cloud segmentation examples. Left column: segmented point cloud. Centre column: depth map. Right column: color
map smoothed using bilateral filtering. Segmentation results are satisfactory allowing real-time scene region extraction.

Comp. Anim. Virtual Worlds 2017; 28: 1686 © 2015 John Wiley & Sons, Ltd.

DOI: 10.1002/cav

7 of 16

Interactive light source position estimation

regions in the scene with different colour and geomet-
ric properties. Further results regarding the runtime and
speed-up obtained compared with the CPU implementation
are provided in the result sections.

4.4. Grid-based Error Minimization Search

The algorithm for estimating the position of the light
source in the scene is highly parallel. The different steps
that are performed and how they are implemented on the
GPU are described subsequently.

4.4.1. Error Estimation.

Assuming a position of the point light source in the
scene, it is necessary to calculate, for every point on each
scene surface, the distance and direction vector from the
scene point to this assumed light source position. This step
is executed in parallel with one CUDA thread computing
the Euclidean distance and the direction vector for each
point. Using this data, we also compute the albedo fac-
tor for every point of the scene in parallel (Equation (6)).
Finally, using the extracted regions and the previously cal-
culated albedo, the proposed error function (Equation (5))
is computed.

B. J. Boom et al.

4.4.2. Grid-base Error Minimization.

To find the light source position with the minimum error,
we perform a grid-based search (Figure 5) in the scene
calculating the error in different positions. The possible
light source positions are distributed uniformly using a 3D
voxel grid (that forms a cube). The error function is com-
puted in parallel in every voxel of the constructed grid. The
GPU implementation of the error function allows us to per-
form this search in less than 1second for a grid of 125
uniform-size voxels with side length 1 m.

4.4.3. Dynamic Approach for Error Minimization
Over Time.

The estimated position of the light is refined every iter-
ation ¢, where the position found in + — 1 is used in ¢
to re-estimate the albedo for the grid-base search error
minimization. To improve position accuracy after every
iteration, the grid and its voxel size are decremented in
successive frames by an established factor, 0.75 in the
experiments, until the position converges. We stop iterat-
ing (convergence) over this process when the voxel size is
smaller than 10-15 cm (six iterations considering an initial
grid size of 4 x 4 x 4 metres).

Figure 5. The error function given a point light source is shown, where the scene is shown from different angles. The green sphere

is the camera position, while the blue sphere is the measured position of the light source with a blue arrow toward the middle of

scene. In this figure, the error is computed in a grid of —2 to 2 metres with steps of % metres. The red spheres are the points where

the errors are sampled and the sphere radius is inversely proportional to the error for visualisation purposes. The largest red sphere

shows the minimum error where black arrow is the global minimum direction for this grid, which is very close to the measured
light position.

8 0f 16

Comp. Anim. Virtual Worlds 2017, 28: 1686 © 2015 John Wiley & Sons, Ltd.

DOI: 10.1002/cav

B. J. Boom et al.

Figure 6. The light sources used to record all the scenes. The
left photo shows the 60 and 100-W light bulbs. The right photo
shows the spotlight.

The refinement process consists in the iterative execu-
tion of the last step of the proposed method: grid-based
energy minimization search. This step is iteratively exe-
cuted reducing the search space (grid size) and therefore
increasing the accuracy of the estimated light source posi-
tion. The light source position computed in the previous
iteration is used as the centroid for the next iteration
(new and reduced search space). Thanks to the accelerated
and parallelized CUDA implementation of the grid-based
energy minimization search step, we are able to run this
step repeated times on the GPU decreasing the search space
and increasing results accuracy.

5. EXPERIMENTS
5.1. Experimental Setup

To test the method, experiments are performed with dif-
ferent light sources and different scenes. To measure
the accuracy of our method, we recorded several differ-
ent scenes under different known illumination conditions.
Most scenes are recorded with a single light source, which
in our case is a 60 or 100-W light bulb or a spotlight
(Figure 6). The distance between two salient control points
in the scene on the ground plane are measured together
with the height of the light source above the floor. Based on
three hand-picked points in the Kinect data, we reconstruct
the ground plane allowing us to determine the Kinect coor-
dinates for the true light source position. These positions
are used as ground truth in our experiments to evaluate
the performance of estimating the light source position and
angle. Some of the scenes that have been captured with the
Kinect are shown in Figure 7. For most scenes, we made
multiple captures under different illumination conditions.
This dataset is available at http://www.dtic.ua.es/jgpul2/
lightEstimation/ (password: lightEstimationEdi).

5.2. Measurement

To measure the accuracy of our method, the difference in
the angle between the estimated position and the measured

Comp. Anim. Virtual Worlds 2017; 28: 1686 © 2015 John Wiley & Sons, Ltd.

DOI: 10.1002/cav

Interactive light source position estimation

position is calculated. Angle comparison is performed by
measuring for every pixel (with related 3D position) in the
scene ‘the angle between the measured light source and
the estimated light source’. For the rendering of objects,
having the angle correct seems to be the most important
component. In the scene, we can also measure the dis-
tance between the estimated and the measured position
of the light source. This is however deemed less impor-
tant than the angle. For instance, the spotlight light source
is not exactly a point light source so it is often esti-
mated with a low angle error but at a distance from the
scene larger than the measured light source. The speed
(ms) of the algorithm is the final measure, where we com-
pare the CPU implementation with several hybrid CPU—
GPU implementations.

5.3. Accuracy Results

Figure 7 shows some of the recorded scenes together with
the estimated previous CPU method, estimated current
hybrid method and measured light positions. Our dataset
consists of 23 different recordings of six different scenes
illuminated with different light sources. The two scenes in
the top rows in Figure 7 show the potential of this method
for estimating the light source position and angle. Deter-
mining the distance accurately seems to be difficult, while
the angle is often correct, which is more important for ren-
dering objects realistically in the scene. The scene at the
bottom of Figure 7 has a large difference in angle and
distance between the estimated and measured light posi-
tion. The main reason for the large difference seems to
be the segmentation, which is probably the main cause of
errors. The segmentation sometimes fails to segment multi-
ple objects with different albedos incorrectly, and therefore
assumes these objects have the same albedo, which causes
errors in the reconstructed image. The difference between
the previous CPU and current hybrid method often comes
from differences in the segmentation methods.

In the preceding theory section, different alternatives
were proposed for computing the albedo (using mean,
robust mean or median). These alternatives have impli-
cations on the speed of the method. In this section, we
compare the different alternatives for the computation of
the albedo, search method and segmentation method. Our
default method on the CPU for the computation of the
albedo is the median, for search the default is the downhill
simplex method and for segmentation it is the graph-based
image segmentation where the only variable parameter is
K =200, where a larger value of K creates larger image
segments. For the hybrid method, we use the robust mean,
grid search and region-growing segmentation.

Computation of the Albedo: We suggest using the mean,
robust mean or median in order to compute the albedo of
a segment. In Figure 8, the accuracy in distance and dif-
ference in angles is shown averaged over all scenes. The
distance computed using the median has a large standard
deviation. It is especially difficult to perform accurately for

9 of 16

http://www.dtic.ua.es/jgpu12/lightEstimation/
http://www.dtic.ua.es/jgpu12/lightEstimation/

Interactive light source position estimation

B. J. Boom et al.

@® CPU Estimated Point Light
O

@ Real Point Light Position
@

Figure 7. Four different scenes (one scene per row) of our dataset together with the camera position (green ball) and the central

processing unit estimated (red ball), graphics processing unit estimated (purple ball) and measured (blue ball) light position. Each row

contains different views of one scene. These scenes are shown from different angles in order to visualise the 3D position or the light

sources correctly. The estimation of the light source position of the first scenes is very accurate; however, the last scene shows that

the accuracy of more complex scenes can be more challenging. The rendering using the estimated light source position in this scene
(Figure 11) still looks realistic.

scenes with a large distance to the light source or scenes
with spotlights. Figure 8 shows that the angle is much
more accurate for the median than the mean, which is more
important for this application. However, the median is a
more expensive operation on the GPU, because it applies
a sort over the entire set of values. Because of this, we
experimented with a robust mean, removing all albedo val-
ues above a certain threshold (r = 2.5), which gives better
estimates than the normal mean and offers comparative
accuracy performance to the median (Figure 8) while using
a computationally cheaper mean operation.

10 of 16

Search Methods: Two search methods are used for find-
ing the light position, namely a grid search for the hybrid
method and the downhill simplex method for the CPU
method. Although the grid size can be set in our soft-
ware, for the experiments, a grid from the Kinect sen-
sor of —2m to 2m is used. A comparison between the
downhill simplex method and the grid search is given
in Figure 9. The downhill simplex method performs
slightly worse than the grid search; however, the grid
search seems to have a larger variance, which seems to
be mainly due to mistakes in the segmentation allowing

Comp. Anim. Virtual Worlds 2017, 28: 1686 © 2015 John Wiley & Sons, Ltd.

DOI: 10.1002/cav

B. J. Boom et al.

Comparison of different albedo computation
4

Interactive light source position estimation

Comparison of different albedo computation

90
3.5 80 +
w3 _ . 70
[9) ! - 3
P4 9]
o 25 I ' g %
= : : S 50
o 2 _ , z — —
© N . © 40 \ — !
© 15 1 [))] '
= . c 1 1
k7] < 30 L L
o 1 20 []
0.5 = .]
0 . . " 0 . . .
Mean Robust Mean Median Mean Robust Mean Median

Figure 8. The boxplot of the error in distance and angle between the measured and estimated light source position, for comput-
ing the albedo using the mean, robust mean and median. These are obtained from our dataset of 23 different recordings on six
different scenes.

Comparison of different search strategies

Comparison of different segmentations

90 90
80 80 1
~ 70 70 7
3 m
5, 60 — £ 60 1
o] j 5% —
T 50 ' T 50 — T 4
[} e L —_ --—] '
> 4 2]
2" : 2o T : ' :
< 30 " < 39 ! HE
10 T 4
o _f_ - 10 i _ o e e
Simplex Cube Imag‘e(mo) |magé(200) \magefDlepm(lOmlmagefDleplh(ZDO) GPU

Search Strategy

Figure 9. The boxplot of the error in angle between the measured and estimated light source position, left: using different search
strategies, right: using different segmentation methods. These are obtained from our dataset of 23 different recordings on six
different scenes.

multiple illumination explanations to be likely for
a scene.

Segmentation Methods: The segmentation methods are
different between the previous CPU and hybrid method.
On the previous CPU method, the graph-based image seg-
mentation [38] is performed both with only the image and
on both image and depth information with two parameter
settings (K = 100 and K = 200) where a large value of K
creates larger albedo segments. On the hybrid method, a
different segmentation method is used on both the image
and depth information. A comparison of these methods is
given in Figure 9, where the median performance of the
different segmentation methods is very similar. The depth
information makes the angle slightly better but also has a
larger standard deviation. The implementation of the seg-
mentation, which is not graph-based but uses region hybrid
growing, gives very similar results to the CPU implemen-
tations, which shows that our method does not depend on
a single segmentation methodology.

5.4. Performance (ms)

The hybrid version of the proposed method has been
tested on a desktop machine with an Intel Core i3 540
3.07 Ghz and different CUDA capable devices. The hybrid
implementation was first developed on a laptop machine

Comp. Anim. Virtual Worlds 2017, 28: 1686 © 2015 John Wiley & Sons, Ltd.

DOI: 10.1002/cav

Table I. CUDA capable devices used in experiments.

Device CUDA Global Bandwidth
model cores memory memory

Quadro 2k 192 1GB 41.6 GB/s
GeForce GTX 480 480 1.5GB 1774 GB/s
GeForce GT630M 96 1GB 32GB/s

equipped with an Intel Core i5 3210M 2.5 Ghz (Intel,
Santa Clara, CA, USA) and a CUDA compatible GPU.
Table I shows different models that have been used and
their main features. We used different models ranging from
the integrated GPU on a laptop to a more advanced model,
demonstrating that the hybrid implementation can be exe-
cuted on different GPUs and obtains good runtimes on all
systems experimented with.

The performance obtained by the hybrid implementa-
tion allows us to execute the proposed method faster than
1 sec. In Table II we can see the different steps that have
been accelerated using the GPU and their different run-
time and the speed-ups achieved for the different graphics
boards. The obtained acceleration is relative to a CPU
implementation of the proposed method.

The best performance was obtained with the graphics
board with the largest number of CUDA cores (GTX480)
and the largest memory bandwidth, performing ~ 6 —

11 of 16

Interactive light source position estimation

B. J. Boom et al.

Table Il. Runtime comparison and speed-up obtained for the proposed method using different graphics boards.

Step GT630M GTX480 Quadro2k CPU GT630M GT480 Quadro2k
Bilateral filtering of depth map T ms 5ms 8ms 1008 ms 91.63x 201.6x 126x
Point cloud projection 2ms Tms Tms 50 ms 25x 50x 50x
Normal estimation 9ms Tms 8ms 190 ms 21.11x 190x 23.75x
Compute distances graph for segmentation 13ms 4ms 11 ms 101 ms 7.76x 25.25x 9.18x
Compute cloud resolution 7ms 4ms 6ms 330ms 47.14x 82.5x B5x
Compute error given point light source 10ms 9ms 12ms 50ms [5.55x 4.16x
Grid-based error minimization 595 ms 583 ms 818 ms 3056 ms 5.13x 5.24x 3.73x
Total execution time 778 ms 718 ms 958 ms 4855 ms 6.24x 6.86x 5.06x

The fastest runtime was achieved by the graphics board NVIDIA GTX480 running the algorithm 6.86 times faster than on a conventional central

processing unit.

Figure 10. Two frames of a virtual object (character) rendered into the scene showing the interaction between the shadows of the
inserted character and the background objects and the difference between a central processing unit and a graphics processing unit
(very small).

7x faster than the CPU implementation. This allows
our light source position estimation technique to be
used for demanding realistic rendering applications with
interactive rates.

The overall speed-up is not so high compared to some of
the individual steps because although the light estimation
process itself is parallelized at pixel level, we still have to
traverse all voxels in the grid and estimate the light posi-
tion in each voxel (brute-force). A more complex approach
could be developed overlapping the computation in paral-
lel over different voxels (task parallelism). We discarded
this approach because in experiments we obtained full
occupancy of GPU processors with the current implemen-
tation, so this high level of parallelism would need more
powerful GPUs.

Another interesting aspect of the results shown in
Table II is that the hybrid implementation allows us to
compute operations that are prohibitively slow on the
CPU such as normal estimation using principal compo-
nents analysis and the depth map noise reduction using
bilateral filtering.

6. RENDERING A SYNTHETIC
OBJECT INTO THE SCENE

6.1. Technical Details
By estimating the light source position, we are able to real-

istically render a new object (Figures 10 and 11) into each
RGB image created by the Kinect, such that the new object

12 of 16

appears natural in terms of lighting, shading and shadows.
To do this, we first create an approximate surface over the
coloured depth data using [50]. This surface gives us the
geometry of the scene. In order to render the new object, we
first use this geometry to design a non-penetrating motion
for the object using keyframe animation in AUTODESK
MAYA (Autodesk, San Rafael, CA, USA). Using the light
position and properties estimated by our method, we can
create a point light element in Maya. This light position is
already in the aligned camera space, so no additional calcu-
lation needs to be performed on the light location. A virtual
camera that matches the Kinect’s properties is created,
using the specifications provided at [51]. The important
values were the horizontal field of view and film aspect
ratio. These were set to 62.7° and 1.33 respectively. In
order to keep the camera model simple, we did not apply
any depth-of-field or motion blurring effects. For render-
ing the artificial images, we used the NVIDIA MENTAL
RAY RAYTRACING SYSTEM (Nvidia, Santa Clara, CA,
USA) [52]. We rendered a separate shadow pass, where
only the shadows on the background surface (that we gen-
erated from the depth data) and on the inserted objects
were calculated. This results in a 640 x 480 render where
non-transparent colours are the values to remove from
the unshadowed image. Self-shadowing is disabled for the
background geometry in order to prevent the duplication of
shadows in the final image. We then rendered an unshad-
owed pass using the light positions, with only the new
character or object visible. For this reason, we call this
second pass the character render. Using these two renders,
we can finally composite the character render, the shadow

Comp. Anim. Virtual Worlds 2017, 28: 1686 © 2015 John Wiley & Sons, Ltd.

DOI: 10.1002/cav

B. J. Boom et al.

Interactive light source position estimation

Figure 11. Replacing the person in the scene with a virtual character by taking into account the lighting of the scene (can you spot
the second addition?).

render and the original RGB image from the Kinect
together to create the final image. We used the ‘replace’
blend mode for the character render over the original
Kinect image and the ‘subtract’ blend mode for the shad-
ows on top of these two. Using the subtract mode allows us
to use the original colour data from the Kinect, while com-
puting the shadow effect for each pixel per frame, giving
us realistic shadows that depend only on the quality of the
reconstructed geometry.

6.2. Resulting Scenes

Although the estimation of the light source will never be
entirely accurate, with Figures 10 and 11 we show that
a reasonable estimation is often sufficient. The experi-
ence of having objects that are rendered while taking into
account the illumination information in the scene will in
most cases be enough. In Figures 10 and 11, other syn-
thetic objects are rendered into the scene to show the
potential of this method. This conclusion is furthermore
supported by the paper of [53], which investigates the
human perception on estimating the light angle showing
that humans cannot detect an error in the angle of 20°.
In the supplemental materials, videos are included show-
ing that the object can interact with the scene. Although
this material is developed offline, given the speed of our
methodology we should also be able to connect these
methods to augmented reality software in the future.
Figure 10 shows that the shadows interact with the envi-
ronment, showing that the shadows take into account the
mesh of the background objects. Figure 11 shows that
you can replace objects or people, although this was
done offline. Using object segmentation this can also be
done online.

7. DISCUSSION

In this paper, a method for estimating the light source posi-
tion is described for the application of rendering synthetic
objects in a scene. A new method for estimating the light

Comp. Anim. Virtual Worlds 2017; 28: 1686 © 2015 John Wiley & Sons, Ltd.

DOI: 10.1002/cav

source position based on 3D depth data with a registered
colour image (e.g. given by a Kinect sensor) has been
developed. We show that this estimation can be performed
at speeds on the order of once per second (718 ms) with
our hybrid implementation. Often, both the Kinect position
and light source position do not change much over time,
which makes this implementation useful for the applica-
tion of augmented reality. We verified our method using
both OPENGL rendering software and with a dataset of
real scenes with measured light position. The experiments
show that the angle of the light source can be estimated
with an average error of 20° between measured and esti-
mated light source positions. These light source estimates
are good enough for rendering synthetic objects into the
scene with realistic looking illumination conditions.
Although this work is limited to the estimation of a
single point light source, we noticed that this simple
assumption often also works in scenes with more dif-
ficult illumination conditions like fluorescent tubes and
reconstructing an image that explains the scene as well as
possible. Although the Kinect is not often used in outdoor
environments, estimating directional light sources like the
sun should be possible by checking if the distance of the
light source to the scene becomes very large and checking
if a directional light source in the same direction is able
to give a better minimization of the error function. The
minimization procedure can also be extended to search for
multiple light sources; however, this adds complexity to the
minimization, making it less attractive for augmented real-
ity. More complex reflectance models that include ambient
light (small amounts of light that is scattered about the
entire scene) and specularity can be used; however, many
more parameters are needed because some of these prop-
erties are surface dependent. Initial simulations showed
minor effects, where ambient light causes the estimated
light source position to be estimated as further away from
the scene, while specular reflectance had the reverse effect.
The light estimation is however often averaged over dif-
ferent kinds of reflective surfaces. Shadow detection and
ray tracing of known objects can enhance the light estima-
tion, but is also an expensive operation, which should be

13 of 16

Interactive light source position estimation

performed after we reduced the search space. Nonetheless,
the effects of cast shadows are limited as shadow areas are
often segmented separately and they are not a very large
part of the scene, resulting in having only a small effect in
the error function.

Future work can focus on other applications where
illumination estimation is important, like improving 3D
surface using shape from shading or creating illumination
invariant features for scene recognition.

ACKNOWLEDGEMENTS

This work is partially supported by the Fish4Knowledge
project, which is funded by the European Union 7th
Framework Programme [FP7/2007-2013], by the HIPEAC
Network of Excellence, by the Valencian Government
grant BEFPI/2012/056 and by EPSRC (EP/P504902/1,
EP/H012338/1)

REFERENCES

1. Izadi S, Newcombe RA, Kim D, Hilliges O,
Molyneaux D, Hodges S, Kohli P, Shotton J, Davison
AJ, Fitzgibbon AW. Kinectfusion: real-time dynamic
3D surface reconstruction and interaction. In SIG-
GRAPH Talks, Vancouver, British Columbia, Canada,
2011; 23:1-23:1.

2. Newcombe RA, Izadi S, Hilliges O, Molyneaux D,
Kim D, Davison AJ, Kohli P, Shotton J, Hodges S,
Fitzgibbon AW. Kinectfusion: real-time dense surface
mapping and tracking. In ISMAR, Basel, Switzerland,
2011; 127-136.

3. Boom BJ, Orts-Escolano S, Ning XX, McDonagh S,
Sandilands P, Fisher RB. Point light source estima-
tion based on scenes recorded by a RGB-D camera.
In British Machine Vision Conference, Bristol, United
Kingdom, 2013; 1-11.

4. Patow G, Pueyo X. A survey of inverse rendering prob-
lems. Computer Graphics Forum 2003; 22: 663—687.

5. Ramamoorthi R, Hanrahan P. A signal-processing
framework for inverse rendering. In Proceedings of the
28th Annual Conference on Computer Graphics and
Interactive Techniques, SIGGRAPH *01. ACM, New
York, NY, USA, 2001; 117-128.

6. Poulin P, Fournier A. Lights from highlights and shad-
ows. In Proceedings of the 1992 Symposium on Inter-
active 3d Graphics, 13D ’92. ACM, New York, NY,
USA, 1992; 31-38.

7. Poulin P, Ratib K, Jacques M. Sketching shadows and
highlights to position lights. In Proceedings of the
1997 Conference on Computer Graphics International,
CGI ’97. IEEE Computer Society, Washington, DC,
USA, 1997; 56-63.

14 of 16

10.

11.

12.

13.

14.

15.

16.

17.

B. J. Boom et al.

. Wang Y, Samaras D. Estimation of multiple direc-

tional light sources for synthesis of mixed reality
images. In Proceedings of the 10th Pacific Confer-
ence on Computer Graphics and Applications, PG ’02.
IEEE Computer Society, Washington, DC, USA, 2002;
38-47.

. Wang Y, Samaras D. Estimation of multiple direc-

tional light sources for synthesis of augmented reality
images. Graphical Models (Special Issue on Pacific
Graphics) 2003; 65(4): 185-205.

Li Y, Lin S, Lu H, Shum H-Y. Multiple-cue illumi-
nation estimation in textured scenes. In Proceedings
of the Ninth IEEE International Conference on Com-
puter Vision, 2003, vol. 2, Nice, France, October 2003;
1366-1373.

Hara K, Nishino K, Ikeuchi K. Light source position
and reflectance estimation from a single view without
the distant illumination assumption. /EEE Transac-
tions on Pattern Analysis and Machine Intelligence
2005; 27(4): 493-505.

Lopez-Moreno J, Hadap S, Reinhard E, Gutierrez D.
Compositing images through light source detection.
Computers & Graphics 2010; 34(6): 698-707. Graph-
ics for Serious Games Computer Graphics in Spain:
a Selection of Papers from {CEIG} 2009 Selected
Papers from the {SIGGRAPH} Asia Education
Program.

Zhou W, Kambhamettu C. Estimation of the size
and location of multiple area light sources. In /7th
International Conference on Proceedings of the Pat-
tern Recognition ICPR’04) Volume 3 - Volume 03.
IEEE Computer Society, Washington, DC, USA, 2004;
214-217.

Zhou W, Kambhamettu C. A unified framework for
scene illuminant estimation. Image and Vision Com-
puting 2008; 26(3): 415-429.

Debevec P. Rendering synthetic objects into real
scenes: bridging traditional and image-based graph-
ics with global illumination and high dynamic range
photography. In Proceedings of the 25th Annual Con-
ference on Computer Graphics and Interactive Tech-
niques, SIGGRAPH °98. ACM, New York, NY, USA,
1998; 189-198.

Gibson S, Howard T, Hubbold RJ. Flexible
image-based photometric reconstruction using virtual
light sources. Computer Graphics Forum 2001; 20(3):
203-214.

Agusanto K, Li L, Chuangui Z, Sing NW. Photorealis-
tic rendering for augmented reality using environment
illumination. In Proceedings of the 2nd IEEE/ACM
International Symposium on Mixed and Augmented
Reality, ISMAR ’03. IEEE Computer Society, Wash-
ington, DC, USA, 2003; 208-216.

Comp. Anim. Virtual Worlds 2017, 28: 1686 © 2015 John Wiley & Sons, Ltd.

DOI: 10.1002/cav

B. J. Boom et al.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

Comp. Anim. Virtual Worlds 2017; 28: 1686 © 2015 John Wiley & Sons, Ltd.

Heymann S, Smolic A, Miiller K, Froehlich B.
[lumination reconstruction from real-time video for
interactive augmented reality. In International Con-
ference on Video and Image Processing, Montreux,
Switzerland, 2005; 1-4.

Hordley SD. Scene illuminant estimation: past,
present, and future. Color Research & Application
2006; 31(4): 303-314.

Gijsenij A, Gevers T, van de Weijer J. Compu-
tational color constancy: survey and experiments.
IEEE Transactions on Image Processing 2011; 20(9):
2475-2489.

Liu 'Y, Qin X, Xu S, Nakamae E, Peng Q. Light source
estimation of outdoor scenes for mixed reality. Visual
Computer 2009; 25(5-7): 637-646.

Liu Y, Qin X, Xing G, Peng Q. A new approach
to outdoor illumination estimation based on statistical
analysis for augmented reality. Computer Animation
and Virtual Worlds 2010; 21(34): 321-330.

Lalonde J-F, Efros AA, Narasimhan SG. Estimating
the natural illumination conditions from a single out-
door image. International Journal of Computer Vision
2012; 98: 123-145.

Liu Y, Granier X. Online tracking of outdoor lighting
variations for augmented reality with moving cameras.
IEEE Transactions on Visualization and Computer
Graphics 2012; 18: 573-580.

Madsen CB, Nielsen M. Towards probe-less aug-
mented reality — a position paper. In GRAPP, Fun-
chal, Madeira - Portugal, 2008; 255-261.

Madsen CB, Lal BB. Probeless illumination estimation
for outdoor augmented reality. In Augmented Real-
ity, Maad S (ed.). Augmented Reality: Rijeka, Croatia,
2010; 15-30.

Sato I, Sato Y, Ikeuchi K. Illumination distribution
from shadows. In IEEE Computer Society Conference
on Computer vision and Pattern Recognition, 1999,
Vol. 1, Fort Collins, Colorado, 1999; 290-300.

Sato I, Sato Y, Ikeuchi K. Illumination from shadows.
IEEE Transactions on Pattern Analysis and Machine
Intelligence 2003; 25(3): 290-300.

Panagopoulos A, Vicente TFY, Samaras D. Illumina-
tion estimation from shadow borders. In 2011 IEEE
International Conference on Computer vision work-
shops (ICCV Workshops), Barcelona, Spain, November
2011; 798-805.

Frahm J, Koeser K, Grest D, Koch R. Markerless aug-
mented reality with light source estimation for direct
illumination. In The 2nd IEE European Conference on
Visual Media Production, 2005, CVMP ’05, London.
United Kingdom, 2005; 211-220.

Loscos C, Frasson M-C, Drettakis G, Walter B, Granier
X, Poulin P. Interactive virtual relighting and remod-
eling of real scenes. In Rendering Techniques 99.
Springer: Berlin, Germany, 1999; 329-340.

DOI: 10.1002/cav

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

Interactive light source position estimation

Loscos C, Drettakis G, Robert L. Interactive vir-
tual relighting of real scenes. IEEE Transactions on
Visualization and Computer Graphics 2000; 6(4):
289-305.

Costa AC, Sousa AA, Ferreira FN. Lighting design:
a goal based approach using optimisation. In Pro-
ceedings of the 10th Eurographics Conference
on Rendering, EGWR’99. Eurographics Associa-
tion, Aire-la-Ville, Switzerland, Switzerland, 1999;
317-328.

Barron JT, Malik J. Intrinsic scene properties from a
single RGB-D image. In Computer Vision and Pattern
Recognition (CVPR), Portland, USA, 2013; 17-24.
Chen Q, Koltun V. A simple model for intrinsic
image decomposition with depth cues. In 2013 IEEE
International Conference on Computer Vision (ICCV),
Sydney, Australia, 2013; 241-248.

Yu L-F, Yeung S-K, Tai Y-W, Lin S. Shading-based
shape refinement of RGB-D images. In IEEE Con-
ference on Computer Vision and Pattern Recognition
(CVPR), Portland, United States, 2013; 1415-1422.
Breckon TP, Fisher RB. Environment authentication
through 3D structural analysis. In Image Analysis
and Recognition. Lecture Notes in Computer Sci-
ence, Vol. 3211. Springer: Berlin Heidelberg, 2004;
680-687.

Felzenszwalb PF, Huttenlocher DP. Efficient graph-
based image segmentation. International Journal of
Computer Vision 2004; 59(2): 167-181.

Nelder JA, Mead R. A simplex method for func-
tion minimization. The Computer Journal 1965; 7(4):
308-313.

Neumann D, Lugauer F, Bauer S, Wasza J, Horneg-
ger J. Real-time RGB-D mapping and 3-D modeling
on the GPU using the random ball cover data structure.
In ICCV Workshops. 1EEE, Barcelona, Spain, 2011;
1161-1167.

Wassenberg J, Middelmann W, Sanders P. An efficient
parallel algorithm for graph-based image segmenta-
tion. In Proceedings of the 13th International Confer-
ence on Computer Analysis of Images and Patterns,
CAIP ’09. Springer-Verlag, Berlin, Heidelberg, 2009;
1003-1010.

NVIDIA. NVIDIA CUDA Programming Guide 4.2.
NVIDIA: Santa Clara, California, United States, 2008.
Rusu RB, Cousins S. 3D is here: Point Cloud Library
(PCL). In Proceedings of the IEEE International Con-
ference on Robotics and Automation (ICRA), Shanghai,
China, May 9-13 2011; 1-4.

Tomasi C, Manduchi R. Bilateral filtering for gray
and color images. In Proceedings of the Sixth Inter-
national Conference on Computer Vision, ICCV ’98.

15 of 16

Interactive light source position estimation

IEEE Computer Society, Washington, DC, USA, 1998;
839-846.

45. Chan D, Buisman H, Theobalt C, Thrun S. A
noise-aware filter for real-time depth upsampling. In
Workshop on Multi-Camera and Multi-modal Sensor
Fusion Algorithms and Applications - M2SFA2 2008,
Marseille, France, 2008; 1-12.

46. Zhan Q, Xiao Y, Liang Y. Color-based segmentation
of point clouds. In ISPRS Volume XXXVIII-3/W8, Paris,
France, 2009; 248-252.

47. Holz D, Behnke S. Fast range image segmentation
and smoothing using approximate surface reconstruc-
tion and region growing. In Proceedings of the 12th
International Conference on Intelligent Autonomous
Systems (IAS), Jeju Island, Korea, June 2012; 61-73.

48. Rabbani T, van den Heuvel FA, Vosselmann G.
Segmentation of point clouds using smoothness
constraint. In IEVMO06, Dresden, Germany, 2006;
248-253.

49. Foley JD, van Dam A, Feiner SK, Hughes JF.
Computer Graphics: Principles and Practice
(2nd ed). Addison-Wesley Longman Publishing Co.,
Inc.: Boston, MA, USA, 1990.

50. Kazhdan M, Bolitho M, Hoppe H. Poisson sur-
face reconstruction. In Proceedings of the Fourth
Eurographics Symposium on Geometry Processing,
SGP ’06. Eurographics Association, Aire-la-Ville,
Switzerland, Switzerland, 2006; 61-70.

51. Konolige K, Mihelich P. Technical description of
Kinect calibration, 2012. Available from: http://www.
ros.org/wiki/kinect_calibration/technical [Accessed on
1 November 2015].

52. WIKI. Mental ray: rendering imagination visible,
2014. Available from: https://en.wikipedia.org/wiki/
Mental_Ray [Accessed on 1 November 2015].

53. Lopez-Moreno J, Sundstedt V, Sangorrin F, Gutierrez
D. Measuring the perception of light inconsistencies.
In Proceedings of the 7th Symposium on Applied Per-
ception in Graphics and Visualization, APGV 10,
New York, NY, USA, 2010; 25-32. ACM.

AUTHORS’ BIOGRAPHIES

Bastiaan J. Boom received his Bach-
elor Engineering degree in Computer
Science from the Hogeschool van
Amsterdam in 2002 and a the Master
degree from the Free University
Amsterdam in Computer Science in
2005 He has a PhD degree from the
University of Twente (2010), where he
specialised in the fields of biometrics. He was Research
Associated at the University of Edinburgh and is currently
working for Cyclomedia, where his research interests are
in computer vision and machine learning.

16 of 16

B. J. Boom et al.

Sergio Orts-Escolano received his
B.Sc and M.Sc in Computer Science
- from the University of Alicante (Spain)
in 2010 and 2011 respectively. He is
currently a researcher with the Depart-
ment of Computer Technology at the
University of Alicante. His research
interests include 3D vision, surveil-
lance systems, parallel computing on GPUs and neural
networks.

Xin X. Ning received his M.Sc (Hons)
degree in Computer Science from the
University of Edinburgh in 2012. Cur-
rently, he is studying at the Entertain-
ment Technology Center at Carnegie
Mellon University.

Steven McDonagh received the BSc
degree in Computer Science and Arti-
ficial Intelligence from The University
of Edinburgh in 2008 and a PhD degree
in 2015. His interests span a variety of
topics in computer vision, image pro-
cessing and machine learning and is
currently working for Disney Research.
His current work focuses on the analysis and implemen-
tation of multi-view registration algorithms, range data
processing and geometric modelling.

Peter Sandilands studied for the
Ph.D. under Dr. Taku Komura at the
School of Informatics in the Univer-
sity of Edinburgh, previously receiving
his BSc (Hons) in Artificial Intelli-
gence and Computer Science from the
x same institution. In 2010, he won the

ScotlandIS Young Software Engineer
of the Year award for his work on visual and auditory
systems of the Sony AIBO and in 2012 won Best Stu-
dent Paper at the Motion in Games conference. His current
research focus is on capture and generation of close inter-
actions between actors and objects. He now works in
industry for Rockstar North.

Robert B. Fisher received a B.S.
with Honors (Mathematics) from
California Institute of Technology
(1974) and a M.S. (Computer Science)
from Stanford University (1978). He
received his PhD from University of
Edinburgh (1987), investigating com-
..\ puter vision. Since then, Bob has been
an academic at Edinburgh University, now in the School
of Informatics, where he helped found the Institute of
Perception, Action and Behaviour.

Comp. Anim. Virtual Worlds 2017, 28: 1686 © 2015 John Wiley & Sons, Ltd.

DOI: 10.1002/cav

http://www.ros.org/wiki/kinect_calibration/technical
http://www.ros.org/wiki/kinect_calibration/technical
https://en.wikipedia.org/wiki/Mental_Ray
https://en.wikipedia.org/wiki/Mental_Ray

	Interactive light source position estimation for augmented reality with an RGB-D camera
	Abstract
	INTRODUCTION
	RELATED WORK
	EXPLANATION OF LIGHT SOURCE ESTIMATION METHOD
	Segmentation
	Error Function
	Search Method

	HYBRID IMPLEMENTATION
	Workflow
	Pre-processing of Depth and Colour Information
	Segmentation
	Grid-based Error Minimization Search
	Error Estimation
	Grid-base Error Minimization
	Dynamic Approach for Error Minimization Over Time

	EXPERIMENTS
	Experimental Setup
	Measurement
	Accuracy Results
	Performance (ms)

	RENDERING A SYNTHETIC OBJECT INTO THE SCENE
	Technical Details
	Resulting Scenes

	DISCUSSION
	ACKNOWLEDGEMENTS
	References

