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Abstract

Whether to attract viewer attention to a particular object,
give the impression of depth or simply reproduce human-
like scene perception, shallow depth of field images are
used extensively by professional and amateur photogra-
phers alike. To this end, high quality optical systems are
used in DSLR cameras to focus on a specific depth plane
while producing visually pleasing bokeh.
We propose a physically motivated pipeline to mimic this
effect from all-in-focus stereo images, typically retrieved by
mobile cameras. It is capable to change the focal plane a
posteriori at 76 FPS on KITTI [13] images to enable real-
time applications. As our portmanteau suggests, SteReFo
interrelates stereo-based depth estimation and refocusing
efficiently. In contrast to other approaches, our pipeline
is simultaneously fully differentiable, physically motivated,
and agnostic to scene content. It also enables computa-
tional video focus tracking for moving objects in addition
to refocusing of static images. We evaluate our approach
on publicly available datasets [13, 33, 9] and quantify the
quality of architectural changes.

1. Introduction

Motivation. Around the turn of the millennium, Japanese
photographers coined the term bokeh for the soft, circu-
lar out-of-focus highlights produced by near circular aper-
tures [41]. To this day, bokeh is a sign of high quality
photographs acquired using professional equipment, closely
linked to the depth of field of the optical system in use [36].
Historically, producing such photos has been exclusively
possible with high-end DSLRs. Synthesizing the effect of
such high-end hardware finds application in particular in
consumer mobile devices where the goal is to mimic the
physical effects of high-quality lenses in silico [19]. Due
to the inherent narrow aperture of cost-efficient optical sys-
tems commonly used in mobile phones, the acquired image
is all-in-focus. This property hampers the natural image
background defocus often desired in many types of scene

Figure 1: SteReFo on video sequence of [13]. A disparity
map is computed from binocular images while a 2D tracker
provides a bounding box (green) to look up the focus depth
on the object of interest (the cyclist). With the retrieved
depth, the proposed differentiable refocusing stage (white
arrow) is utilized to refocus the input frame. The refocused
image is in focus in areas that are equal in depth to the cy-
clist (left) while closer (right) and more distant regions are
blurred.

capture, such as portrait images.
To address this problem a trend has emerged, where shal-
low depth of field images are computationally synthesized
from all-in-focus images [50], usually by leveraging a depth
estimation. In the rest of the paper we refer to this task as
refocusing.

Drawbacks of recent approaches. The portrait mode of
recent smartphones uses depth estimation from monocu-
lar [51] or dual-pixel [50] cameras. To circumvent depth
estimation errors, previous approaches rely heavily on seg-
mentation of a single salient object, making them limited to
scenes with a unique, predominant region of interest. More-
over, this restriction limits the applicability of the underly-
ing refocusing pipeline in other use cases such as object-
agnostic image and video refocusing.

Contributions and Outline. We present a general ap-
proach that utilizes stereo vision to refocus images and
videos (cf. Fig. 1). Our pipeline, entitled SteReFo, lever-
ages the state-of-the-art in efficient stereo depth estimation
to obtain a high-quality disparity map and uses a fast, dif-

1

ar
X

iv
:1

90
9.

13
39

5v
1 

 [
cs

.C
V

] 
 2

9 
Se

p 
20

19



Figure 2: Computational refocusing of an image from [9]. On the left, one input image (from the stereo pair) together with
the intermediate disparity map is illustrated while the right part depicts a continuous sequential refocusing on depth planes
from far (1) to close (10). Note the smooth transition of the refocus plane, not feasible with segmentation approaches. Also,
note the physically motivated radial bokeh effect on the right traffic light in (7), (8) similar to the effects produced by high-end
DSLR equipment. Stereo imagery enables in particular high depth precision for sharp boundaries which can be observed e.g.
on the right side of the red car.

ferentiable layered refocusing algorithm to perform the re-
focusing (Fig. 3 shows the overall pipeline). A total run-
time of 0.14 sec (0.11 sec for depth and 0.03 sec for refo-
cusing) makes it computationally tractable for portable de-
vices. Moreover, our method is agnostic to objects present
in the scene and the user retains full control of both blur
intensity and focal plane (cf. Fig. 2). We also conduct a
study to assess the optimal way to combine depth informa-
tion with the proposed layered refocusing algorithm. Unlike
previous work, we quantify the refocus quality of our meth-
ods by means of a perceptual metric. More specifically, our
contributions are:

1. An efficient pipeline for refocusing from stereo im-
ages at interactive frame-rates with a differentiable
formulation of refocusing for modular use in neural
networks.

2. The proposal and study of novel architectures to com-
bine stereo vision and refocusing for physically mo-
tivated bokeh.

3. Both qualitative and quantitative analysis of our ap-
proach on synthetic and real images from Scene-
Flow [33], KITTI [13] and CityScapes [9].

4. A combination of 2D tracking and depth-based re-
focusing to enable computational focus tracking in
videos with tractable computational complexity.

To the best of our knowledge, SteReFo is the first method
that is jointly trainable for stereo depth and refocusing,
made possible by the efficient design of our differentiable
refocusing. Our model makes effective refocusing attain-
able, yet the approach does not require semantic priors and
is not limited in blur intensity. We show that it is possi-
ble to mimic the manual refocusing effects found in video
acquisition systems by autonomous parameter adjustment.

2. Related Literature
Large bodies of work exist in the domains of both vision-
based depth estimation and computational refocusing. We

Figure 3: The refocusing pipeline. A stereo pair of all-in-
focus images is processed by the depth estimation module
which outputs a disparity map. The disparity map together
with one input image and the refocus parameters are the
input for our efficient refocusing pipeline which leverages
the proposed layered depth of field to virtually set a focus
plane to refocus the input image.

briefly review work most relevant to ours, putting our con-
tributions into context.

2.1. Depth Estimation

Depth estimation from imagery is a well studied prob-
lem with a long history to perform estimation from im-
age pairs [43, 30, 47], from temporal image sequences
in classical structure from motion (SfM) [12, 22] and si-
multaneous localization and mapping (SLAM) [18, 35, 11]
and reasoning about overlapping images with varying view-
point [2, 26]. In addition, the task of single image depth
estimation has shown recent progress using contemporary
learning based methods [29, 14, 16, 32].

Monocular vision. Deep learning based monocular depth
estimation employ CNNs to directly infer depth from a
static monocular image. They are either trained fully super-
vised (with a synthetic dataset or ground truth from differ-
ent sensors) [10, 29] or leverage multiple cameras at train-
ing time to use photo-consistency for supervision [14, 40].



However, these approaches are in general tailored for a spe-
cific use case and suffer from domain shift errors.To ad-
dress this drawback, stereo matching [16] or multi-view
stereo [32] can be used as a proxy. While these recent
approaches estimate reliable depth values, the depth often
suffers from over-smoothing [15] which manifests as “fly-
ing pixels” in the free space found across depth disconti-
nuities. Accurately and faithfully reproducing such bound-
aries is, however, critically important for subsequent refo-
cusing quality. Therefore we focus our approach on a binoc-
ular stereo cue.

Multi-view prediction. For high-accuracy depth maps
that preserve precise object boundaries, multiple views are
still necessary [44] and binocular stereo is supported by
large synthetic [33] as well as real datasets (cf. KITTI [13],
CityScapes [9]). Leveraging this data, StereoNet [25] uses
a hierarchical disparity prediction network with a deep vi-
sual feature backbone which is capable of running at 60 FPS
on a consumer GPU. Its successor [56] extends the work
with self-supervision to the domain of active sensing while
maintaining the core efficiency. We build upon their work
to leverage this computational advantage.
More recently, Tonioni et al. [48] have proposed a way to
perform continuous online domain adaptation for disparity
estimation with real-time applicability.

Other modalities and applications. Fusion of different
visual cues can boost accuracy of individual tasks. Leverag-
ing temporal stereo sequences for unsupervised monocular
depth and pose estimation, e.g. by warping deep features,
improves the accuracy of both tasks [55]. With the same
result, Zou et al. [60] jointly train for optical flow, pose and
depth estimation simultaneously while Jiao et al. [23] mu-
tually improve semantics and depth and GeoNet [53] jointly
estimates depth, optical flow and camera pose from video.
Fully unsupervised monocular depth and visual odome-
try can also be entangled [58] and 3D mapping applica-
tions [57] are realized by heavily relying on dense optical
flow in 2D and 3D. Despite the superiority of these ap-
proaches, they suffer from larger computational burden or
come at the cost of additional training data.

2.2. Refocusing

Refocusing algorithms are heavily utilized in video-games
and animated movie production. A plethora of approaches
has been proposed for shallow depth of field rendering in the
computer graphics community. We follow the taxonomy in
[38] and refer the reader to [5] for a complete survey.The
first style of approach uses ray tracing to accurately repro-
duce the ray integration performed in a camera body. While
some approaches focus on physical accuracy [39] and oth-
ers on (relative) speed [52], these methods are very com-
putationally expensive (up to hours per frame ). It is also

(a) Reference Image

(b) Yang [52] (c) Radial

(d) Gaussian (e) Wang [51]

Figure 4: Refocusing results from different blurring tech-
niques. We display the reference image (a) used by Wang
et al. [51], and a crop for the different results from a pseudo
ray-traced approach [52] (b), a simple radial blur (c), a sim-
ple Gaussian blur (d) and the result in [51] (e). We observe
that the blurred regions for the Gaussian blur and [51] lack
the distinctive bokeh aspect of DSLR, while physically mo-
tivated approaches such as the ray-traced approach and the
radial blur, preserve well the bokeh. The latter serves as a
backbone in our pipeline (Alg. 1).

possible to render a set of views, at different viewpoints,
with fast classical rasterization techniques (i.e. creating a
light-field [31]). Views are then accumulated to produce a
refocused image [17]. However, this requires the scene to
be rendered using an amount of time quadratic in the size
of the maximum equivalent blur kernel, which is computa-
tionally intractable.
This point motivated approaches that seek to reproduce the
blur in the image domain directly. Applying depth-adaptive
blur kernels can be formulated as scatter [28] or gather [42]
operations. While the first is hard to parallelize, the latter
suffers from sharply blurred object edges and intensity leak-
age. Moreover, because the blur kernel is different for each
pixel, these approaches are hard to optimize for GPUs [51].
Finally, the last class of algorithms represents the scenes as
depth layers in order to apply blur with fixed kernels sepa-
rately [27]. We give special attention to this type of algo-
rithm in Sec. 3.1.

Refocusing pipelines. In contrast to computer graphics,
where scene depth and occluded parts can be retrieved eas-
ily, in computer vision, the estimated depth is often noisy
and background information is not necessarily available due
to the projective nature of cameras.
This issue can be addressed through a hole filling task for
missing pixel depth [8] or by leveraging an efficient bilat-
eral solver for stereo-based depth [4].Yu et al. [54] directly
reconstruct such a light field from stereo images, similar
to the techniques discussed previously. It leverages depth
estimation, forward warping plus inpainting to reconstruct



a reasonable number of views that can be interpolated and
summed to render the final image. The same idea is pre-
sented in [46], but the approach is fully learned with sin-
gle image input and light field supervision. Zhu et al. [59]
consider a refocus task using smartphone-to-DSLR image
translation. However, authors concede that average perfor-
mance is considerably worse than highlighted results.
More recently, in [50] is presented a complete pipeline that
computes a person segmentation, a depth map from dual
pixel and finally the refocused image. While the results are
visually compelling, the method is limited to focusing on
a person in the image foreground. In [51], the authors de-
compose the problem into three modules: monocular depth
estimation, blurring and upsampling. While the approach
provides visually pleasing images it is unclear how it gener-
alizes, given its fully synthetic training set. Due to the blur
step being completely learned, we observed that the images
lack the distinctive circular bokeh that professional DSLR
cameras produce (see Fig. 4).
Finally, Srinivasan et al. [45] proposes light field synthesis
and supervision with refocused images (i.e. aperture super-
vision) to learn refocusing. Due to the synthesis of a mul-
titude of views in the first approach, it does not scale well
with large kernels. The latter uses the all-in-focus image
with a variety of radial kernels and the network is trained to
select, for each pixel, which blur value is most likely. The
final image is a composition of these blurred images. This
approach has the limitation that both the focal plane and the
aperture are fixed and cannot be manipulated by a user. In
contrast, we want to keep the system parameterizable.

3. Methodology
As illustrated in Fig. 3, our pipeline is split into two mod-
ules: depth estimation and refocusing. The inputs to the
pipeline are a pair of rectified left and right stereo images.
A focus plane and an aperture are two user-controllable pa-
rameters. In the following, we explain our proposal for the
SteReFo module of Fig. 3 in four different variants which
we compare subsequently.

3.1. Disparity Estimation

To produce high quality depth maps, our architecture takes
inspiration from two state-of-the-art pipelines for real-
time disparity prediction, namely StereoNet [25] and Ac-
tiveStereoNet [56] which estimate a subpixel precise low-
resolution disparity map that is consecutively upsampled
and refined with RGB-guidance from the reference image.
Our depth estimation network consists of two Siamese tow-
ers with shared weights that extract deep image features at
1/8 of the stereo pair resolution following the architecture
described in [56]. We construct a cost volume (CV) by con-
catenation of the displaced features along the epipolar lines
of the rectified input images. The discretization is chosen

Algorithm 1: The layered depth of field base algorithm
used in our approach.

Input : All-in-focus Image I with associated
disparity map D, focus plane df , aperture a,
and disparity range [dmin, dmax]

Output: Image Ib refocused on the depth plane df

1 Is = [0]
2 Ms = [0]

3 for d← dmin to dmax by 1
a do

4 Md = |D − d| < 1
a

5 Id =Md ◦ I
6 r = a · (d− df )
7 Md

b =Md ∗K(r)

8 Idb = Id ∗K(r)

9 Ms =Ms ◦ (1−Md
b ) +Md

b

10 Is = Is ◦ (1−Md
b ) + Idb

11 end
12 Ib = Is �Ms

to include 18 bins. A shifted version of the differentiable
ArgMin operator [24] recovers disparities from i = 0 to
Dmax = 17 where the disparities are given by

di =

Dmax+1∑
d=1

d · σ (−Ci (d))− 1 (1)

with the softmax operator σ and the cost Ci. The low reso-
lution disparity map defined in Eq. 1 is then hierarchically
upsampled ( 18 →

1
4 →

1
2 → full resolution) using bilin-

ear interpolation. Following the idea of Khamis et al. [25],
we use residual refinement to recover high-frequency de-
tails. Prior to stacking the resized image and low-resolution
disparity map, we pass both individually through a small
network with 1 convolution and 3 ResNet [20] blocks, as
we observed this robustifies our depth prediction quality.
The module is trained using a Barron loss [3] with parame-
ters α = 1, c = 2 and RMSProp [21] optimization with an
exponentially decaying learning rate.

3.2. Efficient Layered Depth of Field

Our refocusing module utilizes layered depth of field ren-
dering to enable efficient refocusing. The core idea of
layered depth of field rendering [27] is to first decompose
the scene into depth layers in order to separately blur each
layer before compositing them back together. In contrast to
[51], which learns kernel weights, this physically motivated
choice directly reflects the effects obtained by DSLR lenses
while providing an appropriate balance between efficiency
and accuracy for our runtime requirements. Using this ap-
proach, the blur operation is applied by combining fixed-
kernel convolutions, that make it very efficient in practice



due to contemporary GPU convolutional implementations.
We describe the algorithm in Alg. 1, where the ◦ and �
notation are used for the entrywise Hadamard product and
division respectively, and ∗ denotes convolution. We start
from an all-in-focus image I with its associated disparity
map D, a user-set focus plane df , an aperture a and a dis-
parity range [dmin, dmax] defined by the stereo setup capa-
bilities. Is andMs are two accumulation buffers. We sweep
the scene from back to front within a given disparity range
using a step size of (optimally) 1

a . A mask Md, defining
the zones within a disparity window around the disparity
plane d, is used to extract the corresponding texture of ob-
jects within depth plane Id. The corresponding blur radius
r is computed from the distance of the focal plane df to
the current depth plane d and the given aperture a. The
extracted mask and texture are blurred with a radial kernel
K(r) of diameter r. The blurred mask and texture are accu-
mulated in the buffers Is and Ms, overwriting the previous
values where the mask is not 0, in order to handle clipping
in the blur (i.e. prevent out of focus regions to bleed into
in-focus regions). The final blurred image Ib is rendered by
normalizing the accumulated blur texture with the accumu-
lated masks.

Adaptive downsampling. We alter the base algorithm de-
scribed in Section 3.1 in two ways. To further increase the
efficiency of the pipeline, we set a maximum kernel size
kmax that may be applied. For a given disparity plane d, we
resize the input image by a factor of γ = d2r + 1e /kmax

and apply the convolution with a kernel size K(γ · r). The
blur result is then upsampled to full resolution using bilin-
ear interpolation. While this is an approximation, the visual
difference is marginal due to its application to out of focus
regions. However, the computational efficiency is improved
by several orders of magnitude (cf. Sec. 4.2).

Differentiablility. The second modification we carry out
is making this algorithm differentiable in order to use it in
an end-to-end trainable pipeline. In Alg. 1, it can be ob-
served that all operations carried out are differentiable, ex-
cept for computation of the mask which relies on the non-
smooth less than operator in line 4. By expressing this op-
erator using the Heaviside step function, the mask compu-
tation can be written as:

Md = H

(
1

a
− |D − d|

)
where H(x) =

{
0 x<0
1 x≥0

(2)

While the Heaviside step function itself is non-
differentiable, a smooth approximation is given by
Ĥ(x) = 1

2 + 1
2 tanh(x). Hence we can replace line 4 in

Alg. 1 with

M̂d =
1

2
+

1

2
tanh

(
α ·
(
1

a
− |D − d|

))
(3)

where α controls the transition sharpness of the Heaviside
step function approximation. We empirically set α = 103.

3.3. Refocusing Architectures

To intertwine stereo depth estimation and refocusing in
SteReFo, we investigate the four architectures illustrated in
Fig. 5. The first (A1), dubbed Sequential depth, takes the
disparity, estimated from the stereo network, at full reso-
lution and uses it in the layered depth of field technique
described in Section 3.1. While the first part is supervised
with the ground truth depth, the second stage is not learned.
Sequential aperture (A2) is a variation of the first architec-
ture where aperture supervision is used to train the network
end-to-end from the blur module. A ground truth blurred
image is used instead of the depth, and the loss is defined in
the final image domain by applying a pixel-wise Euclidean
loss. This is possible thanks to the differentiability of the
refocusing algorithm. We use an image refocused with the
ground truth disparity for supervision.
The third technique, B, leverages the fact that the cost vol-
ume of the stereo network provides a scene representation
very similar to the layer decomposition used in the blur-
ring algorithm. We use each slice of the cost volume (after
the StereoNet ArgMin step) directly as a mask Md. We
note these slices are of low resolution (1/8 of the input) and
therefore bilinearly upsample and refine them using a net-
work with shared weights, up to the resolution required to
apply the blurring convolution with a kernel of maximum
size kmax. To train this network, we again use images
blurred with the ground truth depth map and supervise with
an L2 loss. A pretrained StereoNet is utilized for which the
weights are frozen before the cost volume computation step.
The refinement network uses the same blocks as in a refine-
ment scale of ActiveStereoNet [56]. We call this method
cost volume refinement.
Branch C depicts a blur refinement for which we propose to
start from the 1

2 resolution depth map provided by a Stereo-
Net intermediate step, blur the image at half resolution, and
then upsample the blurred images back to full resolution us-
ing an upsampling akin to [56]. Once again, the network is
trained with an L2 loss on a ground truth blurred image and
the weights of the StereoNet part, up to the second refine-
ment scale are frozen.

4. Experimental Evaluation

In the following section we provide qualitative and quan-
titative analysis of our approach on synthetic and real im-
agery using the public datasets SceneFlow [33], KITTI [13]
and CityScapes [9]. All experiments are conducted on an
Intel(R) Core(TM) i7-8700 CPU machine at 3.20 GHz and
we trained all neural networks until convergence using an
NVidia GeForce GTX 1080 Ti GPU with Tensorflow [1].



Figure 5: SteReFo architectures. A Siamese tower extracts deep features from a stereo pair which form a cost volume. Four
instantiations of our pipeline are depicted. Branch A: the cost volume is then sequentially processed by a depth estimation
and differentiable refocusing module and trained with disparity (A1) or aperture (A2) supervision. Branch B: cost volume
refinement. Cost volume slices are adaptively upsampled and fed into the layered depth of field pipeline. Branch C: a low
resolution depth map is used to predict a downsized refocus image which is consecutively upsampled.

Qualitative Evaluation Metrics. Comparing the quality
of blurred images is a very challenging task. Barron et
al. [4] propose to utilize structural metrics to quantify im-
age quality with a light field ground truth. This modality
is difficult to acquire and is therefore usually not present in
real datasets of trainable size. Classical image quality met-
rics, like PSNR and SSIM, do not fully frame the perceptual
quality of refocused images [6]. Because there is no con-
sensus on what, quantitatively, makes for a good refocused
images (bokeh-wise but also in terms of object boundaries
and physical blur accuracy), subjective assessments are of-
ten used [19] and some papers exclusively focus on quali-
tative assessments [54, 52, 46, 51, 45]. In order to provide
quantitative evaluation of our results, in addition to classi-
cal metrics, we propose to utilize a perceptual metric com-
monly used by the super resolution community [7, 6], the
NIQE score [34].
In a first experiment, we use a synthetic dataset to train and
test the four different approaches described in Section 3.3.
In a second experiment we assess how our pipeline per-
forms on real data.

4.1. Architecture Comparison on Synthetic Data

We train the introduced approaches on the full 35mm driv-
ing set of SceneFlow [33] and exclude 11 frames for testing.
The virtual aperture and focal plane is fixed to a = 0.1 and
df = 100, while the disparity range is set to d ∈ [0, 300].
The maximum blur kernel size is kmax = 11.

In Fig. 6 we display the result of the forward pass on our test
images and display a representative crop example in Fig. 7.
Qualitatively we notice that, overall, the result of the se-
quential approach A1 outperforms the other three in terms
of boundaries, bokeh appearance, and blur accuracy. The
blur upsampling method C produces blurry output, even
in areas that are intended to be sharp, and we observed
a loss in the bokeh circularity. The cost volume refine-
ment approach B, although a conceptually interesting idea,
was found to introduce some high frequency artifacts in the
blurred zones and also has generally lower quality bound-
aries. Finally, aperture supervision (A2) is by far the worst
of the approaches, qualitatively, as we find high sensitivity
to uniform areas in the image in addition to poor perfor-
mance at object boundaries.
We further investigate the source of the quality drop in
Fig. 8, where we compare the output of the depth using
ground truth depth supervision and ground truth blurred
images (i.e. aperture supervision). While the depth su-
pervision retrieves disparity precision in particular along
depth discontinuities, the supervision with aperture fails to
recover small details and depth boundaries, ultimately de-
stroying the depth map gradients.

Quantifying the result. The NIQE score [34] unifies a
collection of statistical measures to judge the visual appear-
ance of an image. We initially evaluate our introduced ap-
proaches for the test images numerically in Tab. 1 and ana-
lyze the absolute difference from the ground truth retrievals



Ground Truth Sequential Depth (A1) Sequential Aperture (A2) CV Refinement (B) Blur Refinement (C)

Figure 6: Comparison of the tested approaches. Each column correspond to one method and each row to one test image. We
display on the very left column a ground truth image refocused using the provided ground truth disparity. While we invite
the reader to zoom-in to see the details, more example images are included in the supplementary material.

(a) G.T. (b) Seq. D. (c) Seq. A. (d) CV Ref. (e) Blur Up.

Figure 7: Crop on a representative artifact for the proposed
methods. (a) is the ground truth, (b) the output of the se-
quential approach with depth supervision, (c) the sequential
approach trained with aperture supervision, (d) refocusing
from the cost volume, (e) the blur upsampling.

Ground Truth Depth Supervis. Aperture Superv.

Figure 8: Depth map comparison. Left to right columns cor-
respond to ground truth disparity, the disparity from depth
supervision and from aperture supervision, respectively.

for a relative measure.
On inspection of this result, we observe that our sequential
supervision with depth provides the best quantitative perfor-
mance on all considered metrics which is in line with recent
findings [15] that show artifact removal for simple depth
estimation models. Approaches B and C are on par while
the blur refinement C was found to have the highest (worst)
relative score of 2.4 distance from the ground truth with a
better structural similarity. While the NIQE score aids dis-
covery of best performing methods for this problem (A1 vs.
others), it is not well correlated with our visual judgment of

Sequential Seq. Apert. CV Ref. Blur Ref.
NIQE ↓ 6.5±1.4 7.3±2.4 8.2±3.4 8.1±1.8
Rel. ↓ 0.1±0.04 1.2±0.8 1.7±1.1 2.4±1.8
SSIM ↑ 0.98±0.01 0.95±0.02 0.95±0.03 0.96±0.01
PSNR ↑ 39.16±1.1 36.25±1.2 36.60±1.8 36.56±1.5

Table 1: Evaluation results for perceptual [34] and struc-
tural metrics. ↓ indicates that lower, ↑ that higher is better.

the aperture supervision result. We believe this is due to the
fact that the aperture supervision image is indeed wrongly
refocused, however, it does not show many high-frequency
artifacts in contrast to the blur refinement which is also re-
flected in the classical metrics SSIM and PSNR.

Discussion. We believe our experimental work gives
valuable insight into how the tasks of depth and refocus-
ing can be entangled and the resulting benefits of doing so.
Firstly, it suggest that depth supervision, and therefore high
quality depth data, is essential for refocusing, even more
so than retrieving images that are numerically close to the
ground truth. This is quantitatively supported by the re-
trieved NIQE scores. Secondly, upsampling and refining the
depth gives better quantitative and qualitative results than
upsampling the blurred image. This suggests that the task
of correcting the depth is superior to adjusting a blurred im-
age with residual refinement, especially in the boundaries
of in-focus objects.
Counter-intuitively, upsampling and filtering the cost vol-
ume reveals to be a difficult task, and while the results are
still visually appealing, the high computational complexity
makes this approach less tractable.



Figure 9: Experiments on real data. The region of interest
is set with 2D tracking onto the number plate (middle) and
the corresponding depth value is recovered. The left illus-
trates refocusing using a depth map generated by [14] while
we show on the right the result of our sequential refocusing
pipeline, together with the underlying disparity map.

4.2. Results on Real Data

The lack of a publicly available dataset for stereo-based
refocusing approaches and the requirements of recent
methods for additional information such as segmentation
masks [51], varying aperture [45] or co-modalities given by
dual-pixel sensing [50] and light fields [4] impede a stan-
dardized evaluation protocol. In order to assess how our
approach performs on real data, we utilize that our pipeline
does not require these additional cues and use the datasets
proposed in [9] and [13]. We pick our best-performing ap-
proach, i.e. the sequential pipeline using depth supervision
(A1) and pretrain on CityScapes [9] to perform static image
refocusing (cf. Fig. 2) and refine with the coarse KITTI [13]
ground truth for temporal evaluation.
To examine the efficiency of our pipeline, we apply SteReFo
individually on consecutive frames of [13]. We utilize
correlation-filter based 2D object tracking [49] to reason
about the spatial location of objects of interest, per frame,
prior to applying image refocusing. The 2D tracker pro-
vides state-of-the-art performance at high frame rates, a
choice that makes a lightweight overall pipeline feasible.
For the sake of comparison, we also retrained the monocu-
lar depth estimation approach in [14], and refocus the video
using the generated depth as input for our layered refocus-
ing pipeline.
For both approaches, we use disparity values of d ∈ [0, 80]
and an aperture of a = 0.25, the focal plane is defined as the
median value of the disparities inside the tracking bounding
box, and kmax = 11 (cf. Fig. 1). We compare the results
directly in Fig. 9 and notice that blurring is significantly less
consistent with respect to the scene geometry in the case of
[14] compared to our approach. Indeed, the background is
defocused as if it was not at infinity, the cars appear to re-
side in the same depth plane and the lower section of the car
in the middle of the image is blurred (where it should not).
The disparity maps for each approach support these obser-
vations. The interested reader is referred to the full video
sequence https://youtu.be/sX8N702uIag.

FPS for a = 0.1 0.2 0.5 0.8
kmax =∞ 76 17 2 0.4
kmax = 11 76 38 23 18

Table 2: Runtime evaluation of the layered refocusing
pipeline without (kmax =∞) and with (kmax = 11) adap-
tive downsampling on images of [13]. Frames per second
are evaluated by average of 10 runs.

Timing. We evaluate the timing of our approach on real
data. The average runtime for the entire pipeline is 0.14 sec,
including 0.11 sec to compute the disparity and 0.03 sec for
refocusing. Tab. 2 shows how adaptive downsampling helps
to reduce runtime complexity in particular for wider aper-
ture values in contrast to naive refocusing, where the run-
time grows exponentially with respect to the aperture size.

Limitations. The current approach has some limitations.
The first one is inherent to all approaches relying on pyrami-
dal depth estimation: small details that are lost at the lowest
scale are difficult to recover at the upper scale which is why
thin structures are problematic for our depth estimation (cf.
the mirror of the truck in Fig. 9). The second observation
we make is that StereoNet does not perform as well on real
data as on synthetic data. Apart from the obvious difficulties
(e.g., specularities, rectification errors, noise, optical aber-
rations) real data embeds, we also believe the sparse ground
truth provided by the projected Lidar data used for super-
vision does not encourage the network to refine well at the
object boundaries. Finally, the refocusing part suffers from
the same problems as all image-based shallow DoF render-
ing techniques: it does not handle a defocus foreground very
well. This is due to the fact that we miss occluded informa-
tion when blurring from one view only.

5. Conclusion
The entanglement of stereo-based depth estimation and re-
focusing proves to be a promising solution for the task of ef-
ficient scene-aware image reblurring with appealing bokeh.
Future improvements can address a fusion with segmenta-
tion methods to enhance boundary precision similar to [37]
who entangle the task of semantic segmentation and depth
estimation in real-time. The lightweight differentiable ar-
chitecture with the insight about the value given by a se-
quential approach with depth supervision can be used for a
variety of image and video refocusing applications in other
vision pipelines that utilize our refocusing module. For in-
stance in mobile applications, an image pair is taken at one
point and different refocusing results may be calculated to
help selection by a user afterwards, and the efficiency of
our pipeline paves the way to real-time video editing appli-
cations on the edge.

https://youtu.be/sX8N702uIag
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6. Additional Results
In addition to Figure 6 found in the main paper, Figure 6
shows further results on the SceneFlow dataset [33] for the
different pipelines, A1, A2, B and C, which we propose.



Ground Truth Sequential Depth (A1) Sequential Aperture (A2) CV Refinement (B) Blur Refinement (C)

Figure 10: Comparison of the four different approaches for the rest of the test set. Each column corresponds to one method
and each row to one test image. We display on the very left column the ground truth image refocused using the provided
ground truth disparity. We invite the reader to zoom-in to see the details.


