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Abstract. This paper aims to solve a fundamental problem in intensity-
based 2D /3D registration, which concerns the limited capture range and
need for very good initialization of state-of-the-art image registration
methods. We propose a regression approach that learns to predict rota-
tion and translations of arbitrary 2D image slices from 3D volumes, with
respect to a learned canonical atlas co-ordinate system. To this end,
we utilize Convolutional Neural Networks (CNNs) to learn the highly
complex regression function that maps 2D image slices into their cor-
rect position and orientation in 3D space. Our approach is attractive
in challenging imaging scenarios, where significant subject motion com-
plicates reconstruction performance of 3D volumes from 2D slice data.
We extensively evaluate the effectiveness of our approach quantitatively
on simulated MRI brain data with extreme random motion. We further
demonstrate qualitative results on fetal MRI where our method is in-
tegrated into a full reconstruction and motion compensation pipeline.
With our CNN regression approach we obtain an average prediction er-
ror of 7Tmm on simulated data, and convincing reconstruction quality of
images of very young fetuses where previous methods fail. We further
discuss applications to Computed Tomography and X-ray projections.
Our approach is a general solution to the 2D /3D initialization problem.
It is computationally efficient, with prediction times per slice of a few
milliseconds, making it suitable for real-time scenarios.

1 Introduction

Intensity-based registration requires a good initial alignment. General optimi-
sation methods often cannot find a global minimum from any given starting
position on the cost function. Thus, image analysis that requires registration,
e.g., atlas-based segmentation [2], motion-compensation [14], tracking [I3], or
clinical analysis of the data visualised in a standard co-ordinate system, often
requires manual initalisation of the alignment. This problem gets particularity
challenging for applications where the alignment is not defined by a 3D-3D rigid-
body transformation. An initial rigid registration can be achieved by selecting
common landmarks [3]. However, many applications, in particular motion com-
pensation techniques, require at least approximate spatial alignment and 3D
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consistency between individual 2D slices to provide a useful initialisation for
subsequent automatic registration methods. Manual alignment of hundreds of
slices is not feasible in practice. Landmark-based techniques can mitigate this
problem, but is heavily dependent on detection accuracy and robustness of the
calculated homography between locations and the descriptive power of the used
landmark encoding. 2D slices also do not provide the required 3D information
to establish robust landmark matching, therefore this technique cannot be used
on applications such as motion compensation in fetal imaging.

Robustness of (semi-)automatic registration methods is characterised by their
capture range, which is the maximum transformation offset from which a specific
method can recover good spatial alignment. For all currently known intensity-
based registration methods, the capture range is limited.

Contribution: We introduce a method that automatically learns slice trans-
formation parameters relative to a canonical atlas co-ordinate system, purely
from the encoded intensity information in 2D slices. We propose a Convolu-
tion Neural Network (CNN) regression approach that is able to predict and
re-orient arbitrarily sampled slices, to provide an accurate initialisation for sub-
sequent intensity-based registration. Our method is applicable to a number of
clinical situations. In particular, we quantitatively evaluate the prediction per-
formance with simulated 2D slice data extracted from adult 3D MRI brain and
thorax phantoms. In addition, we qualitatively evaluate the approach for a full
reconstruction and motion compensation pipeline for fetal MRI. Our approach
can naturally be generalised to 3D/3D volumetric registration by predicting the
transformation of a few selected slices. It is also applicable to projective images,
which is highly valuable for X-ray/CT registration.

Related Work: Slice-to-Volume registration is a key step in medical imaging,
as it allows single or multiple 2D images to be registered together in a com-
mon world co-ordinate system to form a consistent 3D volume. This provides
better visualisation for the practitioner to either diagnose or perform operative
procedures. Furthermore, it paves the way to exploit 3D medical image analysis
techniques.

In literature one can distinguish between volume-to-slice and slice-to-volume
techniques. The first is concerned with aligning a volume to a given image, e.g.,
aligning an intra-operative C-arm X-ray image to a pre-operative volumetric
scan. This can be manually or artificially initialised and many approaches have
been proposed to solve this problem. The most advanced solution to this problem
we are aware of uses CNNs to evaluate the spatial arrangement of landmarks
automatically [I3]. Besides this, methods that can compensate for large offsets
usually require the use of fiducial markers [9], which makes use of either special
equipment or invasive procedures.

While our method is also applicable to the volume-to-slice problem, as shown
in Exp. 3, here we focus on the slice-to-volume problem. Manual alignment of
hundreds of slices to each other is much more challenging than the theoretically
possible manual initialisation of volume-to-slice problems.



Predicting Slice-to-Volume Transformation 3

One target application we discuss in this paper is fetal MRI, where mater-
nal breathing and spontaneous movement from the fetus is a major problem,
that involves slice-wise re-alignment of randomly displaced anatomy [4U8IT4ITT].
Existing methods require good initial spatial consistency between the acquired
slices to generate an approximation of the target structure. This approxima-
tion is used for iterative refinement of slice-to-volume registration. Good initial
3D slice alignment is only possible trough fast acquisition like single-shot Fast
Spin Echo (ssFSE) and the acquisition of temporally close, intersecting stacks
of slices. Redundant data covering an area of interest cannot be used from all
acquired images since the displacement worsens during the course of an exam-
ination, thus redundancy has to be high and, generally, several attempts are
necessary to acquire better quality data that can be motion compensated. Nev-
ertheless, from the clinical practice, we know that individual 2D slices are well
examinable and trained experts are able to virtually realign a collection of slices
mentally with respect to their real anatomical localization during diagnostics.
The recent advent of deep neural network architectures [12] suggests that such
a learning based expert-intuition of slice transformations can also be achieved
fully automatically using machine learning.

2 Method

2D slices of moving 3D object acquired parallel in scanner coordinates =
randomly oriented 2D samples of 3D object
3D reconstruction and
motion compensation (SVR)
correctly registered A €
raw 2D slices =
motion-free 3D object

for each 2D slice w;
~

sity>

only image inten
information

256x256x1
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transformation

Enes » 1 = b(w.0)
P3 (xy.2)

Fig. 1: Overview over our approach.

The core of our method utilises a CNN, called SVRNet, to regress and predict
transformation parameters 7}, such that T = ¥(w;, ©), where O is the learned
network parameters and w; € {2 are a series of 2D image slices that are acquired
from a moving 3D object £2. SVRNet provides a robust initialisation for intensity-
based registration refinement by predicting T; for each w; (see Fig. . We also
define T; as known ground truth parameters of w; during validation.

Our proposed pipeline consists of three modular components: (I) approx-
imate organ localisation, (IT) prediction of T}, and (III) 3D reconstruction/
intensity-based registration refinement.

Organ localisation, which defines a Region of Interest (ROI), can be achieved
using rough manual delineation, organ focused scan sequences or automatic
methods, such as [I0] for example for the fetal MRI use case. For 3D Recon-
struction, we use a modified Slice-to-Volume Reconstruction (SVR) method [§]
and initialise it with transformed w; using T;. Here on, we focus on the novel
part of this pipeline, which is SVRNet. SVRNet needs to be trained accurately
on a desired ROI, imaging modality, and use-case scenario.
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Data Set Generation: w;, for training and validation, are generated from n
motion free 3D volumes (24,4in. Each volume encloses a desired ROI, is centred
at the origin and re-sampled to a cubic volume of length L, with spacing 1mm x
1mm x lmm. L/4 sampling planes, with spacing of 4mm and size L x L, are
evenly spaced along the Z-axis.

w; at extremities of (244, may contain little or no content. If the variance of
a particular w; is below a threshold of ¢, where t = K - max(c?(w;)), Vi € §2 and
o%(z) = 1/N vafl |z; — Z|?, then it is omitted. A higher K value will restrict
w; to the middle portion of the volume. In our experiments, K ~ 0.2, which
samples the central 80% of the volume.

To capture a dense permutation of T, € 4rain, we rotate the sampling planes
about the origin whilst keeping the volume static. Ideally, all rotational permu-
tations should be random and evenly spaced on the surface of a unit sphere.
Uniform sampling of polar co-ordinates, P(¢,#), causes denser sampling near
the poles. This can lead to an imbalance of training samples. Thus we use Fi-
bonacci sphere sampling [5], which allows each point to represent approximately
the same area. Thus sampling normals can be calculated by P(¢;,cos™(2;)),
where ¢; = 2mi/®P and z; =1 — (2i+1)/n, i € 0,1,2,...,n — 1. & is the golden
ratio, as =1 = & — 1, and is defined as ¢ = (/5 +1)/2.

For both, training and validation, only one hemisphere needs to be sampled
due to symmetry constraints. Sampling planes with normals in the one hemi-
sphere result in the same image as sampling planes with normals in the other
hemisphere albeit mirrored.

Ground Truth Labels: 7} can be represented by Euler angles (six parameters:
{re,ry, 72, ts, ty, t;}) or Quaternions (seven parameters: {qi, ¢2, ¢3, ¢4, tz, ty, t5}),
or by defining three Cartesian landmarks within the plane (nine parameters).
Huynh et al. [6] have presented detailed analysis on distance functions for 3D
rotations. As they are differentiable, we have implemented them as custom loss
layers for regressing on rotational parameters. The loss for Euler angles can be ex-

pressed as; ¥ ((ar, B, 1), (a2 B2, 72)) = \/d(a, a2)? + d(Br, B2)* + d(1,72)°
where d(a,b) = min{|a — b|,27 — |a — b|}, and o,y € [-m,7); B € [-7/2,7/2).
For quaternions; ¥5(q1,q2) = min{||¢g1 — ¢2||,||¢1 + ¢2||}, where g1 and g are
unit quaternions. We have evaluated all of these options and found that the
Cartesian landmark approach yielded the highest accuracy. Hence, we use this
approach in all our experiments. The landmarks can be arbitrarily selected, as
long as their location remains consistent for all w;. For our experiments, we have
chosen the centres of w;, p., and two corners p;,p,; where p. = (0,0,z), p; =
pe + (-L/2,-L/2,0) and p, = p. + (L/2,-L/2,0). To take rotation into account,
each point is further multiplied by a rotation matrix R to obtain their final po-
sition in world co-ordinates. Each w; can thus be described by nine parameters:
pe(z,y, 2), pi(z,y, 2) and p,(x,y, z). This approach keeps the nature of the net-
work loss consistent as it only needs to regress in Cartesian co-ordinate space
instead of a mixture of Cartesian co-ordinates and rotation parameters.

Network Design: SVRNet is derived from the CaffeNet [7] architecture. Ex-
perimentation with other architectures has revealed that this approach yields a
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maximum training performance whilst keeping the training effort feasible. For
regression, we define multiple loss outputs; one for each p., p;, p.. SVRNet em-
ploys therefore a multi-loss framework, which avoids over-fitting to one particular
single loss [16]. Fig. [1| shows the details of the SVRNet architecture.

3D Reconstruction: The network predicts T; to certain degree of accuracy.
To reconstruct an accurate high-resolution, motion free 3D volume for {2 from
the regression, we integrate an iterative intensity-based SVR motion compen-
sation approach. Conventional SVR methods, e.g. [§], require a certain degree
of correct initial 2D slice alignment in scanner co-ordinate space to estimate an
initial approximation of a common volume (2. The approximation of {2 is subse-
quently used as a 3D registration target for 2D /3D slice-to-volume registration.
Our approach does not depend on good initial slice alignment and disregards
slice scanner co-ordinates completely. We only use slice intensity information for
SVRNet and generate an initialization for {2 using the predicted T;. We use reg-
ularized Super-Resolution and a Point-Spread-Function similar to [8] to account
for different resolutions of low-resolution w; and high-resolution {2. w;-to-{2 reg-
istration is then individually refined using cross-correlation as cost-function and
gradient decent for optimization. Optimization uses three scales of a Gaussian
Pyramid representation for w; and §2. Robust statistics [§] identifies w; that have
been mis-predicted and excludes them from further iterations.

3 Experiments and Results

We have tested our approach on 85 randomly selected and accurately segmented
healthy adult brains, on a real-world use case scenario with 34 roughly delin-
eated fetal brain MRI scans and on 60 low-dose thorax CT scans with no or-
gan specific segmentation. SVRNet’s average prediction error for these datasets
is respectively 5.6+1.07mm, 7.7£4.80mm, and 5.9£2.43mm. We evaluate 3D
reconstruction performance using the Peak Signal-to-Noise Ratio (PSNR) and
T prediction error as average distance in mm between ground truth locations

De,gts Dl,gt» Pr,gt and predicted locations pe p, Di.p, Pr.p, 4.€., (||Pe,gt —Pep||+1[P1,gt —

pupll + [|Prgt — prpll)/3.0.
All experiments are conducted using the Caffe neural network library, on a

computer equipped with an Intel 6700K CPU and Nvidia Titan X Pascal GPU.
Exp. 1: Segmented adult brain data is used to evaluate our network’s re-
gression performance with known ground truth 7;. 85 brains from the ADNI data
set[I] were randomly selected; 70 brains for 24,4, and 15 brains for 2,41idation-
Fig. [2[ shows an example slice of the ground truth and the reconstructed 2.

Each brain has been centered and re-sampled in a 256 x 256 x 256 volume.
Using the Fibonacci Sphere Sampling method, a density of 500 unique normals
is chosen with 64 sampling planes spaced evenly apart on the Z-axis (giving a
spacing of 4mm). This therefore yields a maximum of 32000 images per brain;
2.24M for the entire training set and 345K for the entire validation set. After
pruning w; with little or no content, this figure drops to approximately 1.2M
images for training and 254K for validation. Training took approximately 27hrs
for 30 epochs.
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(a) Original (b) SVRNet (c) +SVR (d) PSNR

Fig.2: Example slice from the segmented adult brain MRI data set (a); re-
construction from 300 w; based on SVRNet regression without SVR (b); SVR
initialised with SVRNet predictions after eight iterations of SVR (¢). Note that
SVRNet (b) predicts individual slice transformations only from image intensi-
ties without any initial world co-ordinates of the sampled slice. (d) shows the
achieved PSNR in dB when comparing the volumes of (b) and (c) to (a).

Reconstructing from T; initialisation without SVR yields a PSNR of 23.7 +
1.09; with subsequent SVR the PSNR increases to 29.5+2.43 when tested on 15
randomly selected test volumes after four iterations of SVR.

Exp. 2: Fetal brain data is used to test the robustness of our approach under
real conditions. Fetuses younger than 30 weeks very often move a lot during
examination. Fast MRI sequences allow artifact free acquisition of individual
slices but motion between slices corrupts consistent 3D information. Fig. [3]shows
that our method is able to accurately predict T; also under these conditions.
For this experiment we use w; from three orthogonally overlapping stacks of
ssFSE slices covering the fetal brain with approximately 20-30 slices each. We
are ignoring the stack transformations relative to the scanner and treat each
w; individually. For (244, 28 clinically approved motion compensated brain
reconstructions are resampled into a 150 x 150 x 150 volume with 1mm x Imm x
1mm spacing. A density of 500 unique sampling normals has been chosen via
the Fibonacci sphere sampling method with 25 sampling planes evenly spaced
between -25 to 425 on the Z-axis. This gives a plane spacing of 2mm, sampling
only the middle portion of the fetal brain. Training took approximately 10hrs for
30 epochs. Prediction, i.e., the forward pass through the network, takes approx.
12 ms/slice.

Exp. 3: Adult thorax data: To show the versatility of our approach we also
apply it to adult thorax scans. For this experiment no organ specific training is
performed but the whole volume is used. We evaluate reconstruction performance
similar to Exp. 1 and T prediction performance when {2 is projected on an
external plane, comparable to X-Ray examination using C-Arms. The latter
provides insights about our method’s performance when applied to interventional
settings in contrast to motion compensation problems. 60 healthy adult thorax
scans were randomly selected, 51 scans used for (2.4, and nine scans used
for 2yaiidation- Each scan is intensity normalised and resampled in a volume of
200 x 200 x 200 with spacing 1mm x Imm x Imm. Using the Fibonacci sampling
method, 25 sampling plane of size 200 x 200, evenly spaced between -50 and
+50, were rotated over 500 normals. Training took approximately 20 hours for
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(a) ssFSE ax. (b) ssFSE sag. (c) train (d) SVR  (e) SVRNet (f) +SVR

Fig.3: Comparison of a single slice from a heavily motion corrupted stack of
ssFSE T2 weighted fetal brain MRI (a); axial multi planar reconstruction of
one sagittal input stack (b); a slice at approximately the same position through
a randomly selected training volume (c); failed reconstruction attempt using
standard SVR based on three orthogonal stacks of 2D slices (d) (the fetus moved
heavily between the acquisition of the individual stacks); reconstruction based
on SVRNet T} regression (e); SVR initialised with SVRNet transformations after
eight iterations of SVR (f). Note that (e) and (f) are reconstructed directly in
canonical atlas co-ordinates.

60 epochs. Fig. [dc| shows an example reconstruction result gaining 28dB PSNR
with additional SVR. T; prediction takes approx. 20 ms/slice for this data.

PRRRT=ETY

(a) original  (b) SVRNet  (c) +SVR (d) PSNR (e) DRR GT (f) SVRNet

Fig.4: (a): Comparison of a single slice from raw low-dose thorax CT data; (b):
reconstruction based on SVRNet 7} regression; (c¢): SVR initialized with SVRNet
transformations after four iterations of SVR; (d): PSNR of (b) and (c) compared
to (a). (e): shows a projection of an unseen pathological test CT volume as DRR
and (e) shows a DRR at the location predicted by our method when presented
with the image data in (e).

We use Siddon-Jacobs ray tracing [I5] to generate Digitally Reconstructed Ra-
diographs (DRRs) from the above described data. For training, we equally sam-
ple DRRs on equidistant half-spheres around 51 CT volumes at distances of
80cm, 60cm, and 40cm, between —90° and 90° around all three co-ordinate
axes. For validation, we generate 1000 DRRs with random rotation parameters
within the bounds of the training data at 60cm distance from the volumetric
iso-centre. We trained on healthy volunteer data and tested on nine healthy and
ten randomly selected pathological volumes (eight lung cancer and two spinal
pathologies). Our approach is able to predict DRR transformations relative to
the trained reference co-ordinate system with an average translation error of
106mm and 5.6° plane rotation for healthy patients, and 130mm and 7.0° aver-
age error for pathological patients. An example is shown in Fig. [d,f. Note that
these values are good enough to robustly initialize intensity-based registration
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refinement. SVRNet prediction can be improved by generating a denser training
data set, in particular, in more equidistant half-spheres.

Discussion & Conclusion: We have presented a method that is able to predict
slice transformations relative to a canonical atlas co-ordinate system. This allows
motion compensation for highly motion corrupted scans, e.g., MRI scans of very
young fetuses. It allows to incorporate all images that have been acquired during
examination and temporal proximity is not required for good initialisation of
intensity-based registration methods as it is the case in state-of-the-art methods.
We have shown that our method performs remarkably well for fetal brain data in
presence of surrounding tissue and without organ specific training for low-dose
thorax CT data and X-Ray to CT registration.

One limitation of our method is that SVRNet requires images to be formatted
in the same way the network is trained on. This includes identical intensity
ranges, spacing and translation offset removal and can be achieved with simple
pre-processing methods. Furthermore, SVRNet has to be trained for a specific
region of interest or organ and scenario (e.g., MRI T1, T2, X-Ray exposure,
etc.). However, we show that the training region does not need to be delineated
accurately and that our method is not restricted with respect to the used imaging
modality and scenario.

Acknowledgements: NVIDIA, Wellcome Trust/EPSRC iFIND [102431],
EPSRC EP/N024494/1
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Appendices

The prediction performance per slice is shown in absolute numbers in Fig. [I0}

Fig. [15] and Fig.

1

Data generation illustration

Figures [f] to [7] illustrate our data generation sampling strategies and shows the
new Z-axis, i.e. normals, of the sampling planes with respect to the origin.

.2

Rotation Permutations of Uniform Sphere Sampling Rotation Permutations of Fibonacci Sphere Sampling Rotation Permutations of Random Sphere Sampling

Fig. 5: Uniform Fig. 6: Fibonacci Fig. 7: Random

Cartesian co-ordinates to rotation and offset

To calculate the rotation error of the predicted plane, we use linear algebra
to create the rotation matrix. The predicted Cartesian points are likely to not
form a perfect isosceles triangle formation compared to the ground truth. We
exclusively use p. as the plane’s origin point in world space with plane rotation
calculated by the following method.

def calculate_R (pl,p2,p3):

vl
v2 =
nl
n2

= p3 — pl
p2 — pl
= np.cross(vl,v2)
= np.cross(nl,vl)

vlnorm = vl / np.linalg.norm(vl) #z
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n2_norm = n2 / np.linalg.norm(n2)
nl_norm = nl / np.linalg.norm(nl)
R_recon [[vl_norm [0] [

#Y
#z
0]

n2_norm , nl_norm[0]],

[vlonorm [1] , n2norm[1] , nlonorm|[1]],
[vlinorm [2] , n2.norm[2] , nl_norm [2]]]

return R_recon

.3 Euler and Quaternion Loss Functions

Any function, given that it’s differentiable, can be used as a layer in a neural
network. The distance metrics for 3D rotation are differentiable. Therefore, we
are able to implement it as a network loss layer for regressing angle parameters.

Euler Loss Function

D, ((alvﬁlavl) ) (042,52,’72)) = \/d (0417042)2 + d(61’52)2 + d(71572)2 (1)
where d(a,b) = min{|a — b|,27 — |a — b|}

Euler Back Propagation Function

0 d(Oél,OéQ) 0
Doy (@1) = T 9, 0y (d (o1, a2))
%(d(a,b)) = —sgn(Ja—b| — ) - sgn (a — b) (2)

0
% (d(a,b)) =sgn(la—bl —m)-sgn(a—Db)
Quaternion Loss Function
D2 (q1,q2) = min{[|g1 — 2|, [lq1 + 2|1} 3)
Quaternion Back Propagation Function

0
50 (02002 = 7 (0 + s (s — el o + ael1)

0 1/ a
5o (P2 @002) = 7 (7 + 5o (o = - s + 2l1)
2

2 3 4
where ¢ = {¢\", ¢!, ¢® ¢} and g2 = {¢{", ¢¢¥, 657, 45V}

.4 Network details

Table [1]lists the details of the SVRNet architecture as it is shown in Figure 1 in
the paper in a complementary textual way.
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‘ Layer Type ‘ Kernel , Stride , Pad ‘ Parameters
Data Layer 256x256x1 - -
conv1-96 11,4,0 11712
pooll 3,2,0 -
LRN1 - -
conv2-256 5,1,2 307456
Convolutional pool2 3,2,0 -
Layers LRN2 - -
conv3-384 3,1,1 885120
conv4-384 3,1,1 663936
convb-256 3,1,1 442624
pool5 3,2,0 -
fc6 - 51384320
FullyLConnected fe7 . 16781312
ayers fc8 - 4097000
Regression Layers ‘ pl ‘ p2 ‘ p3 ‘ - ‘3003‘3003‘3003

Table 1: SVRNet Network Topology

.5 Randomly selected illustrative inference results

Here we show for Exp. 1, Exp. 2, and Exp. 3 randomly selected examples of
images that have been presented to the network (ground truth) compared to an
image sampled at the predicted location.

In these experiments, we present a ground truth (GT) image to the network
to estimate the respective transformation parameters needed to reorient the slice
in its correct world co-ordinates. Using the transformation parameters, we gen-
erated a slice from the 3D atlas in the location where the network has predicted
that slice should be (denoted as SVRNet).

The slices are compared side-by-side to give a visual representation of “where
the slice really is” and “where the network thinks the slice is”.

Exp. 1: Slices, extracted from a correctly registered and reconstructed 3D
volume, from the testing data set are presented to the network. The predicted
slice is extracted from the same volume, using parameters estimated by SVRNet
as shown in Fig. [8 and [9]
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(m) GT  (n) SVRNet (o) GT (p) SVRNet (q) GT (r) SVRNet

Fig.8: Exp 1: Examples of correct Ground Truth (GT) vs. Predicted (SVRNet)
slice transformations.

(a) GT  (b) SVRNetl (c¢) GT (d) SVRNet (e) GT (f) SVRNet

Fig.9: Exp 1: Examples of incorrect Ground Truth (GT) vs. Predicted (SVRNet)
slice transformations. Note that mainly images at the boundaries of the trained
region of interest have been incorrectly predicted.

................................. Histogram of Sice Estmaton Eror of Patent 2 Histogram of Sice Estmaton Eror of Patient 3

| J‘ m"th %m b | M ”’H”M
)

(a) Test 1 (b) Test 2 (c) Test 3

Fig.10: Exp 1: Histogram of three example volumes to show distribution of
prediction error (in mm) with slices from the adult brain validation set.
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Exp. 2: Slices, from a motion corrupted MRI stack, are segmented and cropped.
Since there is no ground truth for the queried images, an arbitrary fetal atlas is
used for visualization in Fig. [[1] and

(a) GT (b) SVRNet (c) GT (d) SVRNet  (e) GT3 (f) SVRNet

(m) GT  (n) SVRNet (o) GT (p) SVRNet (@) GT (r) SVRNet

Fig. 11: Exp 2: Examples of correct Ground Truth (GT) vs. Predicted (SVRNet)
slice transformations.

(a) GT (b) SVRNet (¢) GT (d) SVRNet (e) GT (f) SVRNet

Fig.12: Exp 2: Examples of incorrect Ground Truth (GT) vs. Predicted (SVR-
Net) slice transformations.
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Exp. 3: We replicated the experiment on adult thorax data without specifically
segmented organs. This approach was applied to CT acquisition, shown in Fig[T3]
and[T4] as well as Digitally Reconstructed Radiographs generated using Siddon-
Jacobs Ray Tracing shown in Fig.

(&) GT  (h) SVRNet (i) GT  (j)SVRNet (k) GT (1) SVRNet

Fig. 13: Exp 3: Examples of correct Ground Truth (GT) vs. Predicted (SVRNet)
slice transformations.

(a) GT (b) SVRNet (c) GT (d) SVRNet (e) GT (f) SVRNet

Fig. 14: Exp 3: Examples of incorrect Ground Truth (GT) vs. Predicted (SVR-
Net) slice transformations. Note that most incorrect slices exist in the sagittal
plane.

Histogram ofShice Estmation sror of Patient 1 . Histogram of Sice Estmation eror of Patient 2 . Histogram of Sice Estimaton eror of Patient 3

(a) Test 1 (b) Test 2 (c) Test 3

Fig.15: Exp 3: Histogram of three example volumes to show distribution of
prediction error (in mm) with slices from the adult thorax validation set.
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(@) GT  (b) SVRNet () GT  (d) SVRNet  (¢) GT  (f) SVRNet

-~ &t

- | -

() GT () SVRNet (k) GT () SVRNet

(@ QT (h) SVRNet

Fig. 16: Exp 3: Randomly selected Ground Truth (GT) vs. Predicted (SVRNet)
DRR locations.

from y 250 Slice of
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3 100 -

5 400 450 5w
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(a) 1000 healthy DRRs (b) 1000 pathological DRRs

Fig. 17: Exp 3: Histogram to show distribution of prediction error (in mm) with
randomly selected Ground Truth DRR locations.
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