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PVR: Patch-to-Volume Reconstruction for Large
Area Motion Correction of Fetal MRI
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Abstract— In this paper, we present a novel method
for the correction of motion artifacts that are present
in fetal magnetic resonance imaging (MRI) scans of the
whole uterus. Contrary to current slice-to-volume regis-
tration (SVR) methods, requiring an inflexible anatomical
enclosure of a single investigated organ, the proposed
patch-to-volume reconstruction (PVR) approach is able to
reconstruct a large field of view of non-rigidly deform-
ing structures. It relaxes rigid motion assumptions by
introducing a specific amount of redundant information
that is exploited with parallelized patchwise optimization,
super-resolution,and automatic outlier rejection. We further
describe and provide an efficient parallel implementation
of PVR allowing its execution within reasonable time on
commercially available graphics processing units, enabling
its use in the clinical practice. We evaluate PVR’s com-
putational overhead compared with standard methods and
observe improved reconstruction accuracy in the presence
of affine motion artifacts compared with conventional SVR
in synthetic experiments. Furthermore, we have evaluated
our method qualitatively and quantitatively on real fetal MRI
data subject to maternal breathing and sudden fetal move-
ments. We evaluate peak-signal-to-noise ratio, structural
similarity index, and cross correlation with respect to the
originally acquired data and provide a method for visual
inspection of reconstruction uncertainty. We further evalu-
ate the distance error for selected anatomical landmarks in
the fetal head, as well as calculating the mean and maximum
displacements resulting from automatic non-rigid registra-
tion to a motion-free ground truth image. These experiments
demonstrate a successful application of PVR motion com-
pensation to the whole fetal body, uterus, and placenta.

Index Terms— Motion correction, fetal magnetic reso-
nance imaging, GPU acceleration, image reconstruction,
super-resolution.
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I. INTRODUCTION

THE advent of single shot fast spin echo (ssFSE)
T2-weighted sequences has enabled spin echo image

formation principles [1] in magnetic resonance imaging (MRI)
to play an essential role in fetal diagnosis [2] and research [3].
In particular, cases for which ultrasound (US) fails to acquire
conclusive image data benefit from fetal MRI [4], [5]. Recent
advances in motion compensation for fetal MRI [6] facilitate
advanced image-based diagnostics and lead to novel insights
about the human development.

Fetal MRI enables an ability to distinguish between individ-
ual fetal structures such as brain, lung, kidney and liver, as well
as pregnancy structures such as the placenta, umbilical cord
and amniotic sac. It provides improved visualization and struc-
tural information of the fetal anatomy, which enables to study
abnormalities during pregnancy such as neuro-developmental
disorders [7], placental pathologies [8], fetuses with congenital
lung masses [9], and conjoined twins [10]. MRI is considered
to be safe after the first trimester [11] for 1.5T [12] and
3T [13] without the use of contrast agents, which may have
teratogenic effects. Furthermore, this technology paves the
way for researchers and clinicians to analyze correlations
between childhood development and prenatal abnormalities.

During image acquisition the fetus is not sedated and moves
freely as well as the mother breathes normally. As a result,
movements are likely to corrupt the scans, hiding pathology
and causing overlap between different anatomical regions.
In order to limit these artifacts, fast scanning sequences such
as ssFSE [14] allow for the rapid acquisition of single slices at
high in-plane resolution in a large field of view and good tissue
contrast of the uterus. However, when acquiring a 3D volume
through a stack of slices, inter-slice artifacts in the out-of-plane
views are highly likely. Consequently, this restricts reliable
diagnostics to individual slices in the current clinical practice.
Fig. 1 depicts a typical example of motion related artifacts in
a fetal ssFSE scan. The observed motion (c.f. Fig. 1 b & c)
is of unpredictable nature and consists of a combination of
maternal respiration, bowel and fetal movements.

Slice-to-volume registration (SVR) combined with super-
resolution image reconstruction techniques [15] can be applied
to compensate motion between single slices by reconstructing
a high-resolution (HR) image from multiple, overlapping low-
resolution (LR) images, as shown in Fig. 2. To provide a
sufficiently high number of samples for such an approach,
multiple stacks of 2D-slices need to be acquired, ideally in
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Fig. 1. Three view-planes for raw 3D data acquired through stacks
of ssFSE images covering the whole uterus. The transverse (a) is the
in-plane view, i.e., native 2D slice scan orientation. Motion causes streaky
artifacts for multi-planar reconstructions (MPR) in orthogonal views
(b) and (c) caused by both maternal and fetal movements between the
acquisition of individual slices.

Fig. 2. Illustration of the basic ideas behind reconstruction [15]:
A simplified example of a 2D 4 × 4 HR grid sampling from a 2D 3 × 3
LR grids (left) and a practical example of 3D fetal MRI using multiple
overlapping stacks of slices, by reconstructing a 3D HR image with an
isotropic voxel size from LR images with anisotropic voxel size.

orthogonal orientations. A simple LR → HR reconstruction
model [15] can be formalized as:

Yi = Wi X + ni for 1 ≤ i ≤ N, (1)

where Yi denotes the i -th LR image of total N images, and
X is the HR image. The matrix Wi combines motion, sub-
sampling and degradation effects: Wi = DBTi , where D is
the sub-sampling matrix, B is the blurring matrix, and Ti is
the transformation matrix of observation i . The noise of obser-
vation i is represented by ni . LR images can be considered as
a down-sampled, motion corrupted, blurred, and noisy version
of the HR image. The resulting reconstruction can be divided
into two main parts: motion correction (estimating Wi ) and
super-resolution (estimating X). Image registration can be used
to estimate motion, interpolation to obtain a uniformly spaced
HR image, and regularized super resolution with automatic
outlier rejection to remove blur and noise. Volumetric fetal
MR image reconstruction is more challenging than typical
image reconstruction problems due to unconstrained random
motion during slice acquisitions. Slice misalignments can

lead to a loss of spatial coherence and typically introduce
anisotropic voxel sizes and intensity inhomogeneities.

A. Practical Limitations

SVR methods have been successfully employed to address
these problems in fetal MR and are typically applied to small
regions and organs with rigid body characteristics that are
identified by manual annotations [16]–[19] or less precise,
automated segmentations [20]–[22]. Such approaches are pro-
hibitive to whole body and uterus reconstruction because of
the assumption of rigid motion in the 2D to 3D registration
step of SVR. As a result, different areas in each slice that
are likely to move in different directions will break this
assumption, e.g., the head and thorax. Further, an extension
of 2D-3D registration to include non-rigid deformations is
only well defined with each slice and not well-constrained
in 3D. Current SVR approaches will fail in the presence of
non-rigid deformations and unpredictable organ shapes. This
restricts the application of SVR to regions that are manu-
ally or automatically annotated. Thus, most of the previous
SVR methods have been limited to the fetal brain as the
main region of interest for fetal reconstruction due to the
high incidence of neuro-developmental disability in premature
infants. Only recently, [23], [24] proposed a motion corrected
3D reconstruction of fetal thoracic structures from prenatal
MRI. Moreover, SVR is computationally expensive due to the
exponential increase of computation with the size of the target
area. This leads to prohibitive post-processing times in the
clinical practice. Parallelized implementations [25] can address
run-time problems, however, methodologically SVR is still
restricted to small, rigid body areas.

B. Reconstruction of Large-Scale Anatomy

MRI has further been shown to be useful for the evaluation
of the Whole uterus and structures like the placenta. During
both normal and high-risk pregnancies, the whole uterine
appearance and the condition of the placenta are considered
to be an indicator for fetal health after birth [26]. Placental
functions affect the birth weight as it controls the transmission
of nutrients from the maternal to the fetal circulation [27].
However, the whole fetal body and secondary uterine parts can
be inherently inconsistent. Different fetal body parts can move
independently from the uterus. This makes the application of
SVR and 2D-3D registration to the full uterus impossible in
the presence of fetal motion and maternal respiration.

Besides, multiple births is a case where classical SVR
pipelines, based on preprocessing steps to identify consis-
tent rigid regions, will likely fail. The presence of multiple
instances of the same fetal structure is usually not considered
in previous methods. Therefore, a fully automatic motion
correction method for the whole uterus, as it is presented in
this paper, is very desirable and will enable the application of
standard 3D image analysis techniques, e.g., [28], [29].

C. Related Work

Most motion compensation approaches for fetal MRI are
based on SVR techniques that aim to obtain a motion-free and
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Fig. 3. Overview of the required modules of state-of-the-art SVR methods and main components introduced by previous work.

high resolution volume of a fetal target region. Registration of
individual 2D slices with a higher resolution 3D volume [30]
is the core approach of these algorithms. SVR methods assume
that all acquired images are centered at a specific organ
(e.g., brain, thorax) and cover three orthogonal image direc-
tions. Fig. 3 shows the core elements of SVR and the contri-
bution of previous frameworks from the literature.

The first SVR-based reconstruction framework for fetal
MRI was introduced by Rousseau et al. [16]. It includes steps
to correct 2D slice misalignments, intensity inhomogeneity
distortions, and reconstructs an isotropic HR fetal brain from
sets of LR images. Motion correction is done by applying a
global 3D rigid alignment between the LR images using one
image as a reference to define the global coordinate system.
Then every slice is aligned to the initial reconstructed HR vol-
ume. Normalized mutual information is maximized using the
gradient ascent method for both registration steps. A narrow
Gaussian kernel is applied as a point spread function (PSF)
for volume reconstruction and empty voxels are filled using
the mean of the surrounding voxels. The image contrast is
corrected using one LR image as a reference.

Jiang et al. [31] introduced the acquisition of many thin
slices to provide sufficient sampling of the region of interest.
Cross correlation is used as a cost function for the SVR steps
assuming that the data have consistent contrast properties.
After that, multilevel B-splines are applied to the volumetric
reconstruction for data interpolation, which has the advantage
of reducing blurring of the reconstructed image supported by
including the thin slices.

Kim et al. [17] proposed a method for slice intersection
motion correction (SIMC) of multi-slice MRI for 3D fetal
brain image formation. The method is based on slice-to-slice
registration using spatially weighted mean square intensity
differences (MSD) of the signal between slices as an energy,
assuming that the MRI contrasts are identical. Maternal tissues
are excluded from the energy computations using a windowing
function of a parametric ellipsoid model. Similar to [16],
temporally adjacent slices are grouped together then divided
into half iteratively. The splitting process is performed using
discrete cosine basis functions.

Gholipour et al. [18] were the first to introduce a mathe-
matical model for super-resolution (SR) volume reconstruction
from slice acquisitions of fetal brains. The main difference to
previous methods is that it includes knowledge of the slice
acquisition model and the SR reconstruction is performed
based on maximum likelihood and a robust M-estimation

minimization for an error norm function. A Tikhonov regular-
ization term is added to the cost function in order to enforce
a solution when the number of acquired samples is not high
enough for solving the reconstruction problem.

Rousseau et al. [32], [33] proposed to use a variational
regularization including an approximation of Total Varia-
tion (TV) to better preserve edges. Later, Tourbier et al. [34]
introduced an adaptive regularization by applying novel fast
convex optimization techniques to design an efficient opti-
mization algorithm for the super-resolution problem using
edge-preserving TV regularization.

Murgasova et al. [19] were able to reconstruct the fetal
brain using intensity matching and complete outlier removal.
The main steps of their reconstruction method are: (i) 3D
registration of the acquired stacks using a template stack;
(ii) extracting region of interest (the fetal head) from all the
stacks; (iii) intensity matching and bias correction between the
slices based on an EM framework, where the differential bias
fields and slice-dependent scaling factors are estimated during
the reconstruction; (iv) motion correction using [16] based on
the normalized cross correlation as a similarity measure and
an approximated 3D Gaussian PSF similar to [31]. A posterior
probability is used to define the inlier and outlier voxels within
the EM framework in order to remove the motion-corrupted
artifacts and misaligned data. Blurring in reconstructed images
is reduced by integrating edge-preserving regularization
based on anisotropic diffusion within the SR reconstruction
framework.

Kainz et al. [25] developed a fast multi-GPU accelerated
implementation for the method presented in [19], which is
based on 2D-3D registration, SR with automatic outlier rejec-
tion and an optional intensity bias correction. They extended
the reconstruction framework by automatically selecting the
stack with least motion as the reference stack and using a fully
flexible and accurate PSF instead of approximated functions.
Using a multi-GPU framework enabled the SR reconstruction
process to be approximately five to ten times faster than using
a multi-CPU framework.

To our knowledge, modeling non-rigid transformations with
multiple rigid transformations and without an initial registra-
tion target has only been preliminarily explored for fetal MRI
in [35]. Other works regarding non-linear 3D-3D registration
between an outlier-free, regularly sampled source and target
volume, constrain parts of an image to move independently
and rigidly (e.g. bones through manual segmentation and land-
mark annotation), while allowing other parts to deform [36].
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Fig. 4. A schematic and modular overview of the proposed patch-to-volume reconstruction (PVR) framework. The key parts are 3D-3D registration,
patch extraction, 2D-3D registration, super-resolution, and EM-based outlier removal. Core contributions of PVR are written in red and marked with
asterisk.

In 3D-3D settings globally continuous 3D deformation fields,
which should not be assumed for 2D-3D fetal motion com-
pensation problems, can be approximated by fusing multiple
local rigid transformations as shown in [37] and [38].

D. Contributions

In this paper we propose and evaluate a new paradigm for
motion correction based on SVR and flexible subdivision of
the input space into overlapping, highly redundant and partly
rigid image patches [35], thus solving the motion compensa-
tion problem for large field of view reconstructions. We split
the input into small overlapping areas and find these, which
contain rigid components. This allows to iteratively learn their
consistency compared to a global reconstruction optimiza-
tion volume. Corrupted and inconsistent data is automatically
identified and excluded using robust statistics. Our approach
facilitates the automatic reconstruction of whole collections
of motion corrupted stacks without the need of corresponding
image segmentations. By treating rigid image patches as
piecewise constant segments of organs further allows lim-
ited correction of non-rigid tissue motion. We also evaluate
the non-rigid deformations that may result from PVR using
anatomical landmarks annotated in the fetal head and non-
rigid registration. The presented patch-to-volume reconstruc-
tion (PVR) finds automatically rigidly connected areas, which
can be used as segmentation prior for further refinement using
conventional SVR in small regions of interest. In contrast
to [25], we further introduce a multi-scale patch approach and
thoroughly evaluate the reconstruction quality of the whole
uterus including the fetal brain and placenta. We test the
breaking points of SVR and variations of PVR on synthetically
motion corrupted brain phantom data. The presented approach
is the only currently available method that is able to reconstruct
fetal organs and detailed 3D volumes of secondary, non-rigidly
moving structures such as the placenta.

II. METHOD

SVR-based motion compensation methods make use of
the assumption that rigid regions, e.g., brain and thorax,

of 2D input slices deforms rigidly, where a global 3D volume
is reconstructed by iteratively registering these 2D input slices.
We propose to increase the granularity of the input data by
using 2D image patches of arbitrary shape instead of whole
slices for SVR reconstruction. We explore square patches and
dilated superpixels [39] for the definition of the patch shape.
Superpixels provide a method to define semantically meaning-
ful regions while reducing the required data redundancy and
computational overhead.

PVR relies on the fact that certain regions of the scanned
anatomy are rigid and can be reconstructed with SVR algo-
rithms. However, unlike SVR, it is fully automatic and pro-
vides a full field of view reconstruction. Data consistency is
obtained by oversampling a region of interest at different scan
orientations. Robust statistics can be used to identify mis-
registered or heavily corrupted data [18], [19]. Fig. 4 depicts
a schematic overview of the proposed PVR framework.

A. Input Data and Initialization

A template stack is either randomly or automatically cho-
sen from available input stacks by detecting the stack with
fewest motion artifacts [25]. Global intensity matching is
applied to normalize intensity values of all input images
followed by global 3D-3D alignments to spatially initialize the
reconstruction target. Input data can be represented as stacks
of 2D images (patches) consisting of

Y = {ys |s ∈ S}, (2)

where ys is a patch of arbitrary 2D-shape and indexed by
the location s. S is the set of all locations in all p stacks,
S = {s1, s2, . . . , sM }, and M is total number of patches.

B. Patch Extraction

In the simplest, naïve case the shape of ys is square
defined via its edge length a and stride ω. This definition
is generally applicable to any kind of oversampled motion
corrupted data. If a and ω are fixed, no prior knowledge about
the data is assumed. However, ideally each ys corresponds
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Fig. 5. An illustrative figure showing both square patches and super-
pixels methods for the patch extraction step. A 2D superpixel shows
more flexibility than a square patch in extracting rigid regions or similar
voxels. In practice, superpixels are dilated with few pixels to include some
contextual information in order to increase the accuracy of the patch to
volume registration step.

to a meaningful subregion of the volume in which motion
can be characterized as rigid. Typically, square patches are
overlapping to provide redundant representations of the same
locations. The computational expense of such an approach
increases with patch number and size a. Additional consid-
eration must include the inherent trade-off between a and the
assumption of it containing rigid motion.

An alternative to naïve shape definitions of ys is to find
correlation between voxel locations and their neighbors, which
can be found by unsupervised image segmentation techniques
such as superpixels (SP) [39]. These techniques allow similar-
sized segments to be obtained from local intensity informa-
tion (see Fig. 5) instead of employing dense sampling of
overlapping patches, enabling the image reconstruction with
fewer but more useful data blocks. Further, reducing the total
amount of required data blocks for reconstruction lowers the
computational overhead, positively impacting the overall run-
time. Additionally, larger rigid areas require less computational
effort for image registration and super-resolution, and more
importantly less dependency on inherent image data parame-
ters (e.g., voxel spacing, organ size, subject size).

While there are several techniques for generating SP in
the literature [39]–[41], a fast and efficient SP approach
is desirable for the clinical practice. Simple linear iterative
clustering (SLIC) [39] obtains regular SP based on minimizing
the distance D between the centroids of SP with an initial step
size a. D is defined as:

D =
√

dc
2 +

(
ds

a

)2

t2, (3)

where dc and ds are the intensity and spatial Euclidean
distances that are controlled by the adaptive compactness
parameter t for each SP. In our previous work [35], we use a
defined number of SP centers Nsp ≈ k

√
(n/2), where n is the

number of voxels in an image of size dx , dy and k a constant

factor. Here, we use a regular grid for initialization with a
constant distance a between SP centroids so that Nsp = dx

a + dy
a

and dilate by γ %. Thus, instead of providing a target number
of SP, Nsp is defined by the image size and a controls the
relative size of the SP.

C. Multi-Scale Patches

Although larger patch regions are less likely to include
rigidly connected regions, they may perform better during
2D-3D registration due to the additional contextual informa-
tion of each patch. In contrast, smaller patch sizes are more
likely to represent rigidly deformed regions, but provide less
contextual information, potentially affecting the 2D-3D regis-
tration. A good trade-off between the size of the patch region
and the likelihood of rigid motion needs to be found. Here,
we propose the use of multi-scale patches for reconstruction
to exploit the advantages of different patch sizes. We represent
input data as stacks of 2D patches:

Yi = {ys|s ∈ Si }, (4)

where, instead of using the same Y as a unique input,
a different scale of Yi is used for each iteration i at γ % of
its original size. Similar to Eq. 2, Si is the set of all locations
in all p stacks but with different size for each iteration i .
This is done by re-calling the patch extraction module with
a different patch size (see Fig. 4). Additionally, to increase
contextual information for estimating the transformations,
we compute overlapping ys superpixel patches and dilate each
by γ pixels using a flat structuring element b with a fixed
neighborhood (26 pixels in our case), hence ȳs = ys ⊕ b.
Smaller γ values result in a faster reconstruction. Ideally γ
is > 50% of a, ensuring that every pixel is covered by multiple
samples.

D. Patch to Volume Registration

An HR-image X is reconstructed from a number of
motion corrupted patches ys using 2D-3D registration-based
super-resolution similar to [19] and [25], where an accurate
PSF calculation is used to generate a gradually improv-
ing approximation of X and further employed to initialize
the 2D-3D registration and computation of robust statistics.
In [19] and [25], the PSF is a sinc function for the in-plane
and is the slice profile for the through-plane, measured for the
employed MRI sequence (ssFSE), according to [31].

We employ an implementation of the PSF function by
applying a Taylor series for a better approximation of small
values close to 0. We truncate the series after several terms
and bound the remainder based on relative error ε. The
Taylor series approximation of the sinc function is defined as
sinc(R) = 1− R2

3! + R4

5! − R6

7! +· · · . The proposed approximate
PSF achieves qualitative improvement of the reconstructed
image compared to the sinc implementation. An example from
the first iteration of a fetal brain reconstruction is shown in
Fig. 6. This is expected since Taylor series approximation
is common for computations requiring a high level of accu-
racy close to the machine precision limits of floating point
computations [42].
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Fig. 6. Example for the observed differences in the first iteration of a
fetal brain MRI reconstruction (a). (b) shows a magnified region using
a sinc function for the PSF similar to [35] and (c) shows the result from
using a Taylor series approximation of the sinc function as used in this
work. Taylor series approximation allows a better approximating of small
values close to zero. (d) shows the difference between both images.

During the optimization process, individual 2D patches
are continuously rigidly registered to the current 3D recon-
struction of X and reintegrated into X using iterative super-
resolution with gradient descent optimization. Any similarity
metric can be used as a cost function for the registration step
such as mutual information [16], [19], cross correlation (CC)
[25], [31], or mean square intensity differences [17], [18].
Choosing the best similarity metric for reconstruction depends
on the input data. CC has been found to be effective for
input data with similar intensity distribution [43]. In our
experiments, we employ CC as the similarity metric for
2D-3D registration, after rescaling the intensities between the
input stacks.

E. Super-Resolution

Given that the position and orientation of each patch ys rel-
ative to X is known at any point, patches y∗

s can be simulated
from sampling the current approximation of X using the PSF.
X can subsequently be iteratively improved by minimizing
the error between ys and y∗

s . Gradient decent is used for
the optimization. The optimization has to be regularized to
prevent amplification of registration error, noise and under-
sampling artifacts. Adaptive regularization is applied to reduce
smoothing effects. Therefore the objective function is∑

i

PSF(ysi − y∗
si
)2 + λ

∑
i

∑
d

φ

(
xi+d − xi

δ |d|)
)

, (5)

with φ(t) = 2
√

1 + t2 − 2, voxel locations x ∈ X , d a vector
between the index of a voxel and one of its 26 neighbors,
and δ a parameter that controls when the gradient between
neighboring voxels is considered to be an edge. For our
data a gradient magnitude between 100 and 400 yields good
results. The regularization term represents edge preserving
filtering [44] and is used similarly as presented in [25].
λ is decreased after each iteration. Following the experimental
findings in [19] a suitable starting value for λ is 0.8δ2, halved
after every iteration.

F. EM-Based Outlier Removal

Correctly registered patches ŷs should provide a higher
contribution to the final reconstruction, presenting a low error e
when compared to the original image data. [18] initially
introduced an approach to account for outliers during
super-resolution based on Huber function statistics.

Similar to [19], we employ the expectation maximization
algorithm for outlier removal by classifying ŷs and the
included pixels into an inlier and outlier class. A zero-mean
Gaussian distribution Gσ (e) with variance σ 2 is used for the
inliers and a uniform distribution with constant density

m = 1

max(e) − min(e)
(6)

for the outliers. This makes use of available, highly redundant
information (i.e., overlapping ŷs), to find partly matching
patches and to depreciate or fully reject erroneous voxels.
We aim to maximize the log-likelihood for each patch

ys |log P(Y,	) =
∑

log P(e|σ, c) (7)

to be part of a region of rigid motion. 	 is the current estimate
of the reconstructed volume X , the variance σ 2 of the errors e,
and the proportion of correctly matched voxels c. The posterior
probability for a pixel ∈ ŷs being identified as inlier is

p = Gσ (e)c

Gσ (e)c + m(1 − c)
. (8)

We perform the updates of c and σ 2 according to [19]:
p̂ =

√
(
∑

ŷs

p2)/N , (9)

where N is the number of pixels in ŷs . We further define
an inlier and outlier probability for each ŷs and exclude it
from processing if classified as an outlier (e.g., if it contains
structures moving in opposite directions during scanning, such
as the fetal head and thorax). Only if information in ŷs is
consistent with the originally acquired data, will the registered
patch contribute to the SR reconstruction of X .

G. Identification of Rigid Regions and SVR Refinement

The rigidity of regions is measured by keeping track of
the probability p of each pixel of every ŷs . This allows the
identification of locations best fitting the rigid 2D-3D registra-
tion constraints. Candidate regions, that contain rigid motion
components, can be identified by combining p and p̂ into a
3D volume utilizing the same PSF as used in the reconstruc-
tion. This can further initialize the rigid SVR reconstruction
and visualize the data uncertainty during reconstruction.

III. IMPLEMENTATION

A. Parallelization

The high data redundancy required for the proposed
approach makes conventional single threaded implementation
practically not feasible. Computational complexity of PVR is
exponentially higher than SVR, depending on the employed
patch overlap. For optimal performance we implemented
our approach via General-Purpose Programming on Graph-
ics Processing Units (GPGPU) using the Compute Unified
Device Architecture (CUDA, NVIDIA, Santa Clara, CA)
language [45], [46]. CUDA is a highly evolved single instruc-
tion multiple data (SIMD) programming language, which
allows a large part of the proposed framework to be mapped
onto GPU hardware. Currently, CUDA is the only high-level
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Fig. 7. The software modules defined for the implementation of the proposed approach. For implementation details, please refer to the provided
source code.

general purpose GPU language that provides bi-directional
texture access via surfaces in a kernel, which is essential for
the efficient implementation of certain parts of our framework.
In this section we discuss the key implementation details.

We use a modular design to allow experimentation with the
separate components of the algorithm. An overview of this
design is shown in Fig. 7. The modules are encapsulated in
a CUDA library, which can be used independently from the
instantiating framework. We employ the successor of IRTK1

for interfacing with medical image data.
PVR is parallelized on three levels:
I. Patch-level: Individual patches are mapped to blocks

of a CUDA computing grid and the contained vox-
els are mapped to individual threads. Depending on
the used GPU hardware, patch processing can also
be mapped directly to the computing grid, such that
each thread works on a complete patch (limited by the
employed patch size). The resulting thread divergence
provides opportunities for advanced GPU scheduling
strategies [47] and for a direct translation of optimization
strategies for image registration, for example patch-wise
gradient descent.

II. Voxel-level: For the parallelization of PSF-based super-
resolution and robust statistics we follow a similar three-
fold procedure definition as used in [25]. The voxels
within each patch are processed using kernel level
parallelization and parallel pixel-volume, volume-pixel,
and volume-volume procedures are applied.

III. Patch-batch: PVR scales to multiple GPUs through dis-
tributing independent subsets of patches over the desired
number of devices. Synchronization is done through
averaging of the resulting sub reconstruction volumes on
the master GPU. Initial 3D-3D registration is performed
on a single master GPU, which allows optimal coalesced
memory access.

B. Availability of Source Code

We provide the source code of a C++/CUDA imple-
mentation of the proposed method, including parallelization
strategies, in a publicly available software repository.2 The
source code for the implementation of PVR is licensed under
MIT license.

IV. EVALUATION & EXPERIMENTS

A. Evaluation of Global Image Quality

1) Evaluation of Adult Brain MRI Reconstruction: We evaluate
the performance and limitations of PVR in terms of accuracy

1https://github.com/BioMedIA/MIRTK
2https://github.com/bkainz/fetalReconstruction

and robustness with synthetic deformations of adult brain
data. Similar to [18], an isotropic 1 mm3 T2-weighted adult
brain phantom with no noise obtained from the Brainweb
database [48] is used for this experiment. Three experiments
with different deformations are performed, namely:

I. Rigid Transformation: Synthetic rigid motion artifacts
are generated by translating the axial, sagittal and coro-
nal images with ±dxmm in the x-direction.

II. Bulk Transformation: Synthetic bulk motion artifacts are
generated by rotating the upper half of the original image
with ±θ◦

z around the z-axis.
III. Non-rigid deformation: Synthetic non-rigid motion arti-

facts are generated by skewing (shearing) the axial,
sagittal, coronal images using:

TSxyz =

⎡
⎢⎢⎣

1 Sxy Sxz 0
Syx 1 Syz 0
Szx Szy 1 0
0 0 0 1

⎤
⎥⎥⎦ ,

where we use one combined skewing value
Sxyz = tan(±θ◦

xyz) in the xyz-direction.
Following image deformation, a motion-corrupted 3D stack

is constructed by sampling 2D images from both motion-
free and motion-corrupted stacks in an interleaved manner
similar to fetal MRI acquisition [7]. Where for the bulk
motion experiment a 3D stack is constructed by only rotating
the upper half of the brain. Three stacks are used for the
reconstructions where each stack is sampled with a voxel size
of 1.25×1.25×2.5 mm3. We use standard axial, sagittal, and
coronal orientations as shown in Fig. 8. An HR image with
isotropic voxel size 1.25 mm3 is reconstructed using SVR [25],
square patch- and superpixel-based PVR.

2) Evaluation of Fetal Organ MRI Reconstructions: Evaluat-
ing the quality of reconstructed fetal MRI is challenging due to
the absence of motion-free ground truth data. For this purpose,
we introduce a novel approach for the evaluation problem
based on the originally acquired slice images. Assuming
that 2D in-plane patches extracted from the original stacks
contain no motion artifacts, we use them as gold standard
and compare with corresponding simulated patches from the
reconstructed volume. Evaluation metrics (see Sec. IV-A.3)
are computed between the reconstructed input stacks and the
final motion corrected image and averaged over the whole
volume. The fetal brain is typically used to assess the quality
of reconstruction as it moves rigidly, fulfilling the rigid motion
assumption for SVR-based methods in the 2D-3D registration
step. However, soft tissue organs such as the placenta deform
non-rigidly. For this reason, we additionally chose to recon-
struct the placenta and whole uterus as challenging test cases
for PVR and SVR.
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Fig. 8. Strong synthetic non-rigid motion artifacts caused by skewing an adult brain phantom with an angle of (θ◦xyz = ±1). Rows: MRI in standard
orientations: coronal, axial, and sagittal. Columns: original scan (1 × 1 × 1 mm3), and sampled (1.25 × 1.25 × 2.5 mm3) axially, coronally and
sagittally, and SVR, PVR-square patches and PVR-superpixel reconstructed isotropic images (1.25 × 1.25 × 1.25 mm3).

3) Evaluation Metrics: We employ the following metrics
for measuring the quality of the reconstructed image: Cross-
correlation (CC) to measure the similarity between the inten-
sities of input I (i, j) and reconstructed image Ĩ (i, j) at the
location (i, j), which is defined as:

CC = 1

N × M

N∑
i=1

M∑
j=1

(I (i, j) − Iμ)( Ĩ (i, j) − Ĩμ)

σI σ Ĩ

(10)

where N and M are the dimensions of a 2D slice.
The peak signal-to-noise ratio (PSNR) is used to measure

the error introduced by motion and is based on the mean
squared error (MSE) between the original 2D in-plane patch
and the reconstructed image. PSNR is defined as:

PSN R = 10 log
I 2
max

M SE
(11)

where Imax is the maximum intensity in the original image.
An improved reconstruction quality usually results in higher
PSNR. However, PSNR does not reflect well subjective human
perception of image quality as it is mainly based on estimating
absolute errors between individual pixels.

The structural similarity index (SSIM) accounts for image
degradation as perceived changes in structural informa-
tion [49]. It measures the structural similarity by comparing
normalized local patterns of pixel intensities, which is similar
to the human visual system’s abilities to extract information
based on structure. The SSIM is defined as:

SSI M = (2μI μ Ĩ + c1)(2σI Ĩ + c2)

(μ2
I μ

2
Ĩ
+ c1)(σ

2
I + σ 2

Ĩ
+ c2)

(12)

where μI , μ Ĩ , σ 2
I and σ 2

Ĩ
are the average and variance of

the intensities of the original 2D in-plane slice and the recon-
structed slice respectively. σI Ĩ is the covariance of I and Ĩ .

c1 and c2 are defined as (k1 L)2 and (k2 L)2 in order to balance

the division with weak denominator, where L is the dynamic
range of the intensities in image I . Similar to [49], k1 and k2
are equal to 0.01 and 0.03 respectively.

Structural dissimilarity (DSSIM) heat maps are calculated
in order to visualize the dissimilarities between original and
reconstructed images. DSSIM is calculated as a distance metric
derived from SSIM:

DSSI M = (1 − SSI M)

2
(13)

B. Evaluation of Local Deformations

Compared to SVR, PVR relaxes rigidity constraints and
may therefore introduce deformation artifacts like shrinking of
anatomical structures. Hence, in order to assess the geometric
integrity of the 3D image reconstruction in terms of mm we
conduct two experiments:

1) Evaluation With Anatomical Landmarks: We use a set
of 3D anatomical landmarks that can be clearly defined
in 3D reconstructions of real fetal MRI head scans to assess
the accuracy of nonrigid deformations resulting from PVR
compared to SVR. In particular, we have selected 10 clinically
relevant, anatomical landmarks in the eyes and sub-cortical
region of the fetal brain, which define stable anatomical
structures of the corpus callosum and the lateral ventricles.
A clinical expert has chosen a set of 11 fetal MRI scans with
the best reconstruction quality of the fetal head using SVR.
We have repeated the reconstruction of this set from the
raw scan data using PVR with patches of size 32 and stride
16 pixels. Two different observers have annotated the selected
anatomical landmarks independently across the 11 subjects.
The accuracy is assessed by calculating the average 3D Euclid-
ean distance errors between PVR and SVR (mean annotation
points of the two observers), measured for each landmark for
all 11 subjects.
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Fig. 9. Comparative reconstruction performance of SVR and PVR methods on synthetically corrupted Brainweb [48] data using rigid translational
transformations (1st column), bulk transformations (2nd column) and non-rigid skewing deformations (3rd column). Left to right: PSNR, SSIM and
CC over skew angle in degrees and translations in mm for SVR (blue), superpixel-based PVR (a = 16, γ = 60�, yellow) and PVR using square
patches (a = 32, ω = 16, red).

2) Evaluation of Displacement: In this experiment we seek
to evaluate the quality of PVR in cases of non-rigid motion
between the scanned images using an approximated dis-
placement error measured on the simulated skewing motion
experiment of the brain phantom. The reconstructed images
are first rigidly and then non-rigidly (b-spline [50]) registered
to the motion-free ground truth image. The transformations
resulting from non-rigid registration are used to transform a
set of points sampled uniformly on a 3D grid (5% of the
image size) inside the brain area. To ensure a fair comparison,
we exclude reconstructed images from high motion skewing
angles > 1.5◦, which may affect registration to the reference
image if the reconstructed image is blurred or distorted.

V. RESULTS

A. Global Image Quality

1) Reconstruction of Adult Brain MRI: Experiments on adult
brain MR data using the Brainweb database [48] includes
introducing synthetic non-rigid motion artifacts as described
in Sec. IV-A.1. Example slices of standard planes of original
and corrupted data are depicted in Fig. 8. Comparative exper-
imental results of SVR and PVR reconstruction methods are
shown in Fig. 9 for PSNR, SSIM and CC. For all metrics,
PVR shows an improved performance over SVR, particularly
in the presence of deformations with higher skewing angles.
Further, we observe that superpixel-based PVR achieves per-
formance similar to PVR using arbitrary square patches, while
requiring a lower number of input patches.

2) Reconstruction of Fetal Organs: Exemplary PVR and
SVR reconstructions under motion introduced by kicking of
the fetus are shown in Fig. 10. PVR reconstruction results

Fig. 10. Example reconstructions of consecutive MR scans of a
moving fetus (kicking): input data (a) and corresponding cutting planes
through an SVR- (b) and PVR-reconstructed (c) volumes. SVR produces
blurry but readable results because of high data redundancy and outlier
rejection through robust statistics. PVR with square patches of a = 32
and ω = 16 appears visually superior. The arrow points at an area of
substantial quality differences caused by independent rapid movements
of the leg.

show an improved visual appearance and less blurring in the
region with severe motion artifacts (arrow).

An example of a challenging clinical case with a kidney
malformation in one of twin fetuses, is shown in Fig. 11. Our
clinical partners confirmed that such complications are easier
to examine and to quantify after PVR-based reconstruction.
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TABLE I
AVERAGE (A) PSNR AND (B) SSIM RESULTS (N = 32) FOR THE INPUT STACK (BASELINE) AND PVR VARIANTS WITH FIXED (FS) AND

MULTI-SCALE (MS) VARIANTS OF SQUARE PATCHES AND SUPERPIXELS. ALL MEAN DIFFERENCES OF PVR AGAINST

BASELINE ARE STATISTICALLY SIGNIFICANT (p <0.05). NAMES OF ALL STATISTICALLY SIGNIFICANTLY

DIFFERENT PVR VARIANTS ARE STATED IN BOLD

Fig. 11. Three viewing planes through the original motion corrupted scan
of a moving twin with a gestational age of 28 weeks (a) and PVR recon-
struction using multi-scale superpixels (b). For this dataset we masked
the uterus to save unnecessary computation time in areas containing
maternal tissue. The white arrow points at a unilateral multicystic kidney
of one of the twins.

Comparative experiments of PVR variants were carried out
on 32 fetal MR scans at gestational ages of approximately
20 weeks with voxel size around 1.00 × 1.00 × 2.50 mm3

and 1.25 × 1.25 × 1.25 mm3, constituting challenging image
corruption samples. The ssFSE T2-weighted sequences data
have been acquired on a Philips Achieva 1.5T, the mother
lying 20◦ tilt on the left side to avoid pressure on the
inferior vena cava and aligned to the main axes of the fetus.
Table I (a) & (b) show numerical results of evaluating
individual stacks before reconstruction (baseline), and the final
reconstructed image from 3-6 stacks using square patches
(a = 32 and ω = 16), superpixels (a = 16, γ = 60%)
and multi-scale superpixels (with initial a = 16, γ = 60%
and ×1.5 scaling factor for every new iteration). Statis-
tical testing between baseline and PVR variants was car-
ried out using paired T-Tests and differences between using
fixed or multi-scale and between square patches or superpixels
were assessed via Two-factor ANOVA with repeated measures.
In Table I (a) & (b) the names of PVR variants are marked
in bold if statistically significant differences have been found
during analysis, i.e., FS and MS and/or Square Patches and
Superpixel pairs are bold if the results between them differ
significantly.

The evaluation of the reconstruction quality of a whole
3D image into a single-valued metric may not properly
reflect the performance differences, as it is based on aver-
aging values of all the pixels of all the input stacks.
Furthermore, Table I indicates significant differences between
variants of PVR but these differences have only minimal qual-
itative effect on reconstruction accuracy. Therefore, Fig. 12
evaluates the reconstruction quality of PVR additionally

using dissimilarity heat maps based on the measured DSSIM
(see Sec. IV-A.3). This approach allows further qualita-
tive evaluation and allows for uncertainty visualization of
PVR reconstructions.

3) Fetal Brain Reconstruction at Late Gestation: Examination
of the brain is one of the primary uses for fetal MRI.
While PVR’s primary aim is to reconstruct large fields of
view and non-rigid motion, we also compare how PVR
performs under the conditions under which SVR is usually
applied (accurate delineation of a brain mask followed by rigid
full slice to volume registration). This experiment evaluates if
PVR can efficiently substitute SVR in pipelines where only
the reconstruction of a single, masked rigidly moving organ is
required, i.e., for compensation of pure bulk motion.

To compare PVR’s performance, we collected a second
dataset comprising of ten mature fetuses (GA > 33 weeks)
with little motion, expert brain segmentation, and validated
state-of-the-art SVR reconstructions [25]. PVR is applied only
in the delineated brain area and compared to clinical SVR
reconstructions in terms of PSNR, SSIM, CC and compu-
tational overhead. In contrast to [35], where only a small
area of the brain was evaluated, we evaluate the full brain
mask in the current work. We chose patch parameters similar
to [35] (a = 32, ω = 16), which performed best for square
patches according to the evaluation in [35] and used the multi-
scale superpixel approach presented in this paper. Figure 14
shows that PVR provides similar reconstruction and motion
correction quality for the brain as would be the case if a tight
expert mask [20] for a region of interest would have been used
for SVR. However, the computational overhead of processing
patches is always larger than if SVR is used. In this experiment
SVR is considered to be the baseline processing 100% of the
available pixels. The required runtime of any PVR variant
will always be longer than if SVR is used for bulk motion
compensation of a defined region of interest.

4) Multi-Scale Reconstruction: We evaluate different scale
parameters for the multi-scale superpixel reconstruction to fur-
ther assess the influence of the number of scales on the recon-
struction quality. Similar to the phantom brain experiment,
we reconstruct a brain image from 3-stacks deformed with
skewing angle θxyz = ±1◦. We use the ground truth image
for evaluating quantitatively each reconstructed image with
five different scales as shown in Table II. Multi-scale (MS)
reconstruction is configured to increase the scale of the patch
by a factor of ×1.5, four times starting from a = 16 to 40
(2-iteration per each scale). Fixed-scale (FS) reconstruction is
configured to fix the size of the patch for every reconstruction
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Fig. 12. A sample 2D cutting plane through a motion-corrupted fetal brain (a) and placenta (f), after PVR using square patches with a = 32 and
ω = 16 (b) and (g). The DSSIM heat map for a baseline before reconstruction (c) and (h), and after PVR (d) and (i). The average DSSIM of the fetal
brain equals 0.497 (c) and 0.248 (d), while for the placenta equals to 0.491 (h) and 0.214 in (i).

Fig. 13. (a) Number of generated patches and (b) necessary additional
overhead pixels (%) of the different PVR variants versus their reconstruc-
tion PSNR quality of the whole uterus (see Table I-a). Optimal results
are found in the upper left corner of the plots, i.e., high reconstruction
quality and low computational overhead. The subject number is high-
lighted inside each circle marker. Multi-scale superpixels (MS-superpixel)
achieve similar reconstruction quality to fixed-size (FS-patch), multi-
scale (MS-patch) square patches while clustering in the area of minimal
computational overhead.

TABLE II
COMPARISON BETWEEN FIXED-SCALE (FS) AND MULTI-SCALE (MS)
SUPERPIXELS RECONSTRUCTION USING 3 PHANTOM BRAIN INPUT

IMAGES DEFORMED WITH SKEWING ANGLE θxyz = ±1◦

iteration. Figure 13 and Table II show that MS-PVR achieves
similar performance as FS-PVR, while larger scale patches
result in a lower number of input patches and overhead pixels.

B. Local Deformations

1) Landmarks: The results for each landmark are summa-
rized in Table III. The inter-observer error is 0.92 ± 0.41 mm.
The average distance between all landmarks in PVR recon-
structions and the mean landmark location in SVR reconstruc-
tions between the two observers is 1.13 ± 0.87 mm. In order

Fig. 14. Comparison of the best performing PVR parameters from [35]
for square patches and multi-scale superpixels with SVR for motion
compensation of the brain in mature (GA > 33 weeks) fetuses with little
motion. PVR’s image quality is similar to the small-area SVR method
currently used in the clinical practice. The necessary patch overlap
for PVR requires more computation, which results generally in longer
runtime for any PVR variant.

TABLE III
MOTION IN TERMS OF THE DISTANCE THE 3D LANDMARKS HAVE BEEN

ESTIMATED (SVR) TO HAVE BEEN DISPLACED DURING IMAGING, AND

THE DISPLACEMENT OF THESE LANDMARKS BETWEEN PVR AND

CLINICALLY VALIDATED SVR RECONSTRUCTIONS

to provide an indication of the scale of rigid motion being
addressed in the fetal brain landmark images, the estimated
displacement distance of all 3D landmarks during imaging is
measured by calculating the distance between each annotated
landmark and its inverse-transformed point from the corre-
spondent slice of an input stack, assuming rigid slice motion
for SVR. The maximum of the calculated displacements equals
to 79.85 mm. The total average equals to 13.58 ± 15.23 mm
for all landmarks, see Table III. The p-values from a paired
T-test show that the difference between the error introduced
between observers and PVR can be considered to be not
statistically significant (p = 0.0166). Overall, this evaluation
demonstrates that PVR does not introduce notable structural
distortion compared to rigid SVR.
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TABLE IV
MEAN AND MAXIMUM DISPLACEMENT ERROR IN mm RESULTING FROM

NON-RIGID REGISTRATION BETWEEN DIFFERENT RECONSTRUCTIONS

AND THE MOTION-FREE ADULT BRAIN PHANTOM GROUND TRUTH

2) Displacement: The mean and maximum displacement
of 9 reconstructed images are calculated for SVR and PVR
with different parameters. The results in Table IV shows that
PVR with patch size of 64 achieves the smallest mean error,
while this error increases with the decrease of the patch size.

C. Performance Analysis

We further evaluate the computational performance of each
PVR variant. Measuring the overall runtime is not mean-
ingful because this would be highly machine specific and
would include data transfer overhead and non optimized func-
tions. The runtime varied between 2000–4000s on our testing
machines, depending on the system configuration. Instead
we analyze the computational overhead introduced by PVR
in comparison to SVR. The overhead can be measured by
counting the number of processed patches and the number
of additionally processed voxels. We compare these values
to the achieved reconstruction quality in Fig. 13. Multi-
scale superpixels show significantly better performance than
other PVR variants and introduce only minimal necessary
overhead while gaining similar image quality to more naïve
PVR variants. Multi-scale superpixels are potentially five times
faster than other variants.

VI. DISCUSSION

PVR surpasses reconstruction performance of the state-of-
the-art SVR method for cases with considerable non-rigid
deformations and inconsistent bulk motion. We have eval-
uated different variants of PVR using fixed-size and multi-
size square patches and fixed-size and multi-size superpixels.
ANOVA analysis has shown significant differences between
these approaches for different areas of the uterus. However,
evaluation of motion compensation methods is difficult espe-
cially due to the lack of ground truth in fetal MRI. Mapping
the reconstruction quality of a whole 3D volume into a single-
valued metric may not properly reflect qualitative differences,
if based on averaging all measured values of all input stacks.
Therefore, we have additionally performed extensive qualita-
tive analyses and present examples and evaluation based on
structural dissimilarity (DSSIM) heat maps.

While an SVR reconstruction is constrained by using whole
orthogonal slices assuming rigidity, PVR may introduce geo-
metric deformations due to the relaxation of the rigidity
assumption to smaller patches instead of whole slices. For
this reason, we evaluated local deformations by selecting
anatomical landmarks from the fetal head and compare PVR
with SVR, which shows that the difference is not statistically
significant for individual landmarks. We also employ dense,

non-rigid registration to further validate the geometric accu-
racy of the reconstruction. Reconstructed images from SVR
and PVR with different variants are non-rigidly aligned to
a motion-free brain phantom. The mean and maximum dis-
placements of the deformations are then calculated to measure
the accuracy. Both experiments evaluate local deformations,
although the latter may include errors introduced by the
imperfect non-rigid registration process. Maximum displace-
ment errors are mainly observed in feature-poor regions like
the amniotic fluid, where automatic non-rigid registration
does not perform well. Despite showing strong evidence that
PVR works well for the whole uterus, it should be noted
that our experiments to assess the reconstruction quality on
brain anatomy do not necessarily extend to the achieved
reconstruction accuracy of other areas (e.g. moving limbs).
Focused validation of individual regions will be required for
other, domain specific applications.

In addition to reconstruction and motion correction of the
whole uterus, we have demonstrated that the proposed method
works for multiple births cases with multiple fetal instances
present in the volumetric image. These cases are more likely
to have complications and to undergo MRI during pregnancy
but would require extensive manual effort to be successfully
reconstructed with state-of-the-art methods.

Although our method is able to reconstruct the whole
uterus automatically, small parts like limbs that move rapidly
between the acquisition of individual slices are more difficult
to recover. This is especially problematic for very young
fetuses that have more space to move inside the womb.
In cases of rapid limb movements (>2 cm between individual
slices) PVR is not able to find structural consensus between
overlapping patches and blurry image regions will be recon-
structed. This is a general problem of automatic intensity-
based optimization methods and methods that are able to
understand the semantic content of each patch will likely be
required for future improvements.

PVR introduces a considerable computational overhead
to the reconstruction stage of fetal MR image processing
pipelines. We have evaluated the amount of necessary addi-
tional redundant information to give a general idea about the
expected runtime of different PVR variants. Patches based on
multi-scale superpixels are significantly more efficient than
a naïve implementation of overlapping square patches, while
maintaining a similar reconstruction accuracy. Quantitatively,
square patches perform slightly better for the brain, which
is most likely due to the rigid nature of the enclosing skull.
Superpixel-based patches achieve better results for regions that
are likely affected by non-rigid movements like the placenta
and the whole uterus.

VII. CONCLUSION

We have introduced and evaluated the concept of patch-
to-volume reconstruction (PVR) in order to compensate non-
rigid motion artifacts from fetal MRI scans without requiring
a defined region of interest. PVR splits the 3D input image
into overlapping square patches and superpixels and employs
automatic EM-based outlier rejection to find consistent data.
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Our method is able to automatically reconstruct whole
collections of motion corrupted stacks without the need for
image segmentation and manual identification of rigid regions.
We have shown that PVR can reconstruct the whole uterus,
selected fetal organs, and secondary, non-rigidly moving preg-
nancy structures such as the placenta.

PVR’s reconstruction quality and computational perfor-
mance has been evaluated quantitatively and qualitatively on
an adult phantom T2-weighted brain with synthetic non-rigid
motion artifacts, as well as on the whole uterus from motion
corrupted fetal MRI data including fetal brain, placenta and
cases with multiple births.
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